Challenges of an accelerating universe in string theory

I. Antoniadis

NORDITA, Stockholm and LPTHE, Sorbonne Université, CNRS, Paris

Joint PRIN online seminar 31 March 2022

Universe evolution: based on positive cosmological constant

Dark Energy

simplest case: infinitesimal (tuneable) +ve cosmological constant

• Inflation (approximate de Sitter)

describe possible accelerated expanding phase of our universe

The cosmological constant in Supergravity

Highly constrained: $\Lambda \geq -3m_{3/2}^2$

• equality \Rightarrow AdS (Anti de Sitter) supergravity

 $m_{3/2} = W_0$: constant superpotential

- o inequality: dynamically by minimising the scalar potential
 ⇒ uplifting Λ and breaking supersymmetry
- Λ is not an independent parameter for arbitrary breaking scale $m_{3/2}$ What about breaking SUSY with a $\langle D \rangle$ triggered by a constant FI-term? standard supergravity: possible only for a gauged $U(1)_R$ symmetry: absence of matter $\Rightarrow W_0 = 0 \rightarrow dS$ vacuum Friedman '77
- exception: non-linear supersymmetry [8]

Non-linear SUSY in supergravity

I.A.-Dudas-Ferrara-Sagnotti '14

$$K = X\bar{X}$$
; $W = f X + W_0$

 $X \equiv X_{NL}$ nilpotent goldstino superfield [6]

$$X_{NL}^{2} = 0 \Rightarrow X_{NL}(y) = \frac{\chi^{2}}{2F} + \sqrt{2}\theta\chi + \theta^{2}F$$
$$\Rightarrow \quad V = |f|^{2} - 3|W_{0}|^{2} \quad ; \quad m_{3/2}^{2} = |W_{0}|^{2}$$

- V can have any sign contrary to global NL SUSY
- NL SUSY in flat space $\Rightarrow f = \sqrt{3} m_{3/2} M_p$
- R-symmetry is broken by W_0

gauge invariant at the Lagrangian level but non-local becomes local and very simple in the unitary gauge

Global supersymmetry: $\mathcal{L}_{\mathrm{FI}}^{new} = \xi_1 \int d^4\theta \frac{\mathcal{W}^2 \overline{\mathcal{W}}^2}{\mathcal{D}^2 \mathcal{W}^2 \overline{\mathcal{D}}^2 \overline{\mathcal{W}}^2} \mathcal{D} \overset{\text{gauge field-srength superfield}}{\mathcal{W}} = -\xi_1 \mathrm{D} + \mathrm{fermions}$

It makes sense only when $<\mathrm{D}>\neq0\Rightarrow$ SUSY broken by a D-term

Supergravity generalisation: straightforward

unitary gauge: goldstino = U(1) gaugino = 0 \Rightarrow standard sugra $-\xi_1 D$

Pure sugra + one vector multiplet \Rightarrow [4]

$$\mathcal{L} = R + \bar{\psi}_{\mu}\sigma^{\mu\nu\rho}D_{\rho}\psi_{\nu} + m_{3/2}\bar{\psi}_{\mu}\sigma^{\mu\nu}\psi_{\nu} - \frac{1}{4}F_{\mu\nu}^{2} - \left(-3m_{3/2}^{2} + \frac{1}{2}\xi_{1}^{2}\right)$$

- $\xi_1 = 0 \Rightarrow AdS$ supergravity
- $\xi_1 \neq 0$ uplifts the vacuum energy and breaks SUSY

e.g. $\xi_1 = \sqrt{6}m_{3/2} \Rightarrow$ massive gravitino in flat space

New FI-term introduces a cosmological constant in the absence of matter Presence of matter \Rightarrow non trivial scalar potential net result: $\xi_1 \rightarrow \xi_1 e^{K/3}$ but breaks Kähler invariance

However new FI-term in the presence of matter is not unique

Question: can one modify it to respect Kähler invariance?

Answer: yes, constant FI-term + fermions as in the absence of matter

 \Rightarrow constant uplift of the potential I.A.-Chatrabhuti-Isono-Knoops '18

Jang-Porrati '21

In general $\xi_1 \rightarrow \xi_1 f(m_{3/2}[\phi, \phi])$ I.A.-Rondeau '99

It can also be written in N = 2 supergravity

I.A.-Derendinger-Farakos-Tartaglino Mazzucchelli '19

String theory: vacuum energy and inflation models

related to the moduli stabilisation problem

Difficulties to find dS vacua led to a conjecture:

$$\frac{|\nabla V|}{V} \ge c$$
 or $\min(\nabla_i \nabla_j V) \le -c'$ in Planck units

with c, c' positive order 1 constantsOoguri-Palti-Shiu-Vafa '18Dark energy: forbid dS minima but allow maximaInflation: forbid standard slow-roll conditions

Assumptions: heuristic arguments, no quantum corrections

 \longrightarrow here: explicit counter example

Moduli stabilisation in type IIB

- Compactification on a Calabi-Yau manifold $\Rightarrow N = 2$ SUSY in 4 dims Moduli: Complex structure in vector multiplets (N = 1 vector + chiral) Kähler class & dilaton in hypermultiplets (two N = 1 chiral) \Rightarrow decoupled kinetic terms
- turn on appropriate 3-form fluxes (primitive self-dual) $\Rightarrow N = 1$ SUSY field-strengths of 2-index antisymmetric gauge potentials + orientifolds and D3/D7-branes
- vectors and RR companions of geometric moduli are projected away \Rightarrow all moduli in N = 1 chiral multiplets + superpotential for the **complex structure & dilaton** \rightarrow fixed in a SUSY way Frey-Polchinski '02 Kähler moduli: no scale structure, vanishing potential (classical level)

Moduli stabilisation in type IIB

flux generated superpotential:

$$W = \int_{CY} G_3 \wedge \Omega_{,}; \quad G_3 = F_3^{RR} - \Phi H_3^{NS}, \ \Phi = C_0^{RR} + ie^{-\phi}$$

holomorphic 3-form

 \Rightarrow 3-brane charge:

$$Q_3 = -\int_{CY} H_3 \wedge F_3 > 0 \implies$$
 need orientifold planes O_3 and branes

 \Rightarrow leftover Kähler moduli effective supergravity: [14]

 $K = -2 \ln \mathcal{V}$; $W = W_0 \Rightarrow$ vanishing scalar potential

Non perturbative superpotential from gaugino condensation on D-branes \Rightarrow stabilisation in an AdS vacuum Derendinger-Ibanez-Nilles '85 Uplifting using anti-D3 branes Kachru-Kallosh-Linde-Trivedi '03 or D-terms and perturbative string corrections to the Kähler potential Large Volume Scenario (LVS) Conlon-Quevedo et al '05 Ongoing debate on the validity of these ingredients in full string theory While perturbative stabilisation has the old Dine-Seiberg problem put together 2 orders of perturbation theory violating the expansion possible exception known from field theory: logarithmic corrections \rightarrow Coleman-Weinberg mechanism [13]

The Dine-Seiberg problem

Runaway potential towards vanishing string coupling or large volume

 \Rightarrow if there is perturbative minimum, it is likely to be at strong coupling or string size volume

Analogy with Coleman-Weinberg symmetry breaking

Effective potential in massless $\lambda \Phi^4$

$$V = \left\{ \sum_{N>1} c_N \lambda^N(\Phi) \right\} \Phi^4 \implies \text{minimum at } \lambda = 0 \text{ or } \mathcal{O}(1)$$

C-W perturbative symmetry breaking needs 2 couplings + logs: [18]

$$V_{\rm C-W} = \left(\lambda + c_1 e^4 \ln \frac{|\Phi|^2}{\mu^2}\right) |\Phi|^4 \Rightarrow |\Phi|_{\rm min}^2 \propto \mu^2 e^{-\frac{\lambda}{c_1 e^4}}$$

both λ and e are weak <1

realising this proposal in string theory:

- replace gaugino condensation by log corrections in the F-part potential
- use D-term uplifting as in LVS

Log corrections in string theory:

localised couplings + closed string propagation in $d \le 2$

Effective propagation of massless bulk states in $d \leq 2 \Rightarrow$ IR divergences [18]

- d = 1: linear, d = 2: logarithmic
- \Rightarrow corrections to (brane) localised couplings

depending on the size of the bulk due to local closed string tadpoles

I.A.-Bachas '98

e.g. threshold corrections to 4d gauge coupling linear dilaton dependence on the 11th dim of M-theory

Type II strings: correction to the Kähler potential \leftrightarrow Planck mass [10] [16] I.A.-Ferrara-Minasian-Narain '97

Log corrections in string theory

decompactification limit in the presence of branes

(0, p)

(p,p)

 $V_{\perp} = R^d \quad \vec{p}_{\perp} = \vec{n}/R$

 $R >> l_s \Rightarrow$

local tadpoles: $F(\vec{p}_{\perp}) \sim \left(2^{5-d} \prod_{i=1}^{d} (1+(-)^{n_i}) - 2 \sum_{a=1}^{16} \cos(\vec{p}_{\perp} \vec{y}_a)\right)$

(c)

(a)

(b)

Localised gravity kinetic terms

Corrections to the 4d Planck mass in type II strings

Large volume limit: localised Einstein-Hilbert term in the 6d internal space

I.A.-Minasian-Vanhove '02 [18]

10d: $R \wedge R \wedge R \wedge R \rightarrow \text{ in 4d: } \chi \mathcal{R}_{(4)}$ Euler number = $4(n_H - n_V)$ [21]

$$S_{\rm grav}^{IIB} = \frac{1}{(2\pi)^7 \alpha'^4} \int_{M_4 \times \mathcal{X}_6} e^{-2\phi} \mathcal{R}_{(10)} + \frac{\chi}{(2\pi)^4 \alpha'} \int_{M_4} \left(2\zeta(3) e^{-2\phi} + \frac{2\pi^2}{3} \right) \mathcal{R}_{(4)}$$

4-loop σ -model \nearrow vanishes for orbifolds

localisation width $w \sim |\chi| I_s = I_p^{(4)}$

in agreement with general arguments of localised gravity

Dvali-Gabadadze-Porrati '00

perturbative moduli stabilisation I.A.-Chen-Leontaris '18, '19

localised vertices from $\mathcal{R}_{(4)}$ can emit massless closed strings

 \Rightarrow local tadpoles in the presence of distinct 7-brane sources

propagation in 2d transverse bulk $ightarrow \log R_{\perp}$ corrections

exact computation: difficult either in CY or in orbifolds - genus 3/2

 $T = T_0/g_s$: brane tension

perturbative moduli stabilisation I.A.-Chen-Leontaris '18, '19

Kähler potential:

$$\mathcal{K} = -2\ln\left(\mathcal{V} + \xi + \eta \ln\frac{\mathcal{V}_{\perp}}{w^2} + \mathcal{O}(\frac{1}{\mathcal{V}})\right) = -2\ln\left(\mathcal{V} + \eta \ln\mu^2 \mathcal{V}_{\perp}\right) \quad ^{[21]}$$

$$\mathcal{L} = -\frac{1}{2} \sqrt{f(\sigma_{\perp})} = \int \zeta(3) \simeq 1.2 \quad \text{smooth CY} \quad n = -\frac{1}{2} \sigma_{\perp} T_{\perp} \zeta_{\perp} \zeta_{\perp}$$

$$\zeta = -\frac{1}{4}\chi'(g_s), \quad I(g_s) = \begin{cases} \frac{\pi^2}{3}g_s^2 & \text{orbifolds} \end{cases}$$

Using 3 mutual orthogonal 7-brane stacks with D-terms (magnetic fluxes) and minimising with respect to transverse volume ratios [13]

$$\Rightarrow V \simeq \frac{3\eta W_0^2}{\mathcal{V}^3} \left(\ln \mu^6 \mathcal{V} - 4 \right) + 3 \frac{d}{\mathcal{V}^2} \quad \mathcal{W}_0: \text{ constant superpotential, } d: \text{ D-term}$$

dS minimum: $-0.007242 < rac{d}{\eta \mathcal{W}_0^2 \mu^6} \equiv
ho < -0.006738$ with $\mathcal{V} \simeq e^5/\mu^6$ [20]

FI D-terms

$$V_{D_i} = rac{d_i}{ au_i} \left(rac{\partial K}{\partial au_i}
ight)^2 \, = \, rac{d_i}{ au_i^3} + \mathcal{O}(\eta_j)$$

 au_i : world-volume modulus of D7_i-brane stack with $\mathcal{V} = (au_1 au_2 au_3)^{1/2}$

$$\eta_i \equiv \eta \implies V_{tot} = \frac{3\eta \mathcal{W}_0^2}{\mathcal{V}^3} \left(\ln(\mathcal{V}\mu^6) - 4 \right) + \frac{d_1}{\tau_1^3} + \frac{d_2}{\tau_2^3} + \frac{d_3\tau_1^3\tau_2^3}{\mathcal{V}^6}$$

minimising with respect to τ_1 and $\tau_2 \Rightarrow \frac{\tau_i}{\tau_j} = \left(\frac{d_i}{d_j}\right)^{1/3} \Rightarrow$

$$V_D = 3 rac{d}{\mathcal{V}^2} \quad {
m with} \quad d = (d_1 d_2 d_3)^{1/3}$$

2 extrema min+max $\rightarrow -0.007242 <
ho < -0.006738 \leftarrow$ +ve energy [18] [24]

perturbative moduli stabilisation I.A.-Chen-Leontaris '18, '19

$$\xi = -\frac{1}{4}\chi f(g_s); \quad f(g_s) = \begin{cases} \zeta(3) \simeq 1.2 & \text{smooth CY} \\ \frac{\pi^2}{3}g_s^2 & \text{orbifolds} \end{cases} \quad \eta = -\frac{1}{2}g_s T_0 \xi$$

dS minimum: $-0.007242 < rac{d}{\eta \mathcal{W}_0^2 \mu^6} \equiv
ho < -0.006738$ with $\mathcal{V} \simeq e^5/\mu^6$

exponentially large volume:

$$\mu = \frac{e^{\xi/6\eta}}{w} = \sqrt{|\chi|}e^{-\frac{1}{3g_s T_0}} \to 0 \quad \Rightarrow \tag{18}$$

weak coupling and

large χ or/and \mathcal{W}_0 from 3-form flux to keep ho fixed

requirement: negative χ (η < 0) [16] and surplus of D7-branes (T_0 > 0)

Inflation possibilities

- Inflaton: canonically normalised $\phi = \sqrt{2/3} \ln \mathcal{V}$ (in Planck units)
- one relevant parameter: ho or $x = -\ln\left(-4
 ho/3
 ight) 16/3$

0 < x < 0.072 for dS minimum

• extrema $V'(\phi_{\pm})=0$

$$\phi_{+} - \phi_{-} = \sqrt{2/3} \left(W_0(-e^{-x-1}) - W_{-1}(-e^{-x-1}) \right)$$

 $W_{0/-1}$: Lambert functions satisfying $W(xe^x) = x$

$$\frac{V(\phi_{+})}{V(\phi_{-})} = \frac{\left(W_{0}(-e^{-x-1})\right)^{3} \left(2+3W_{-1}(-e^{-x-1})\right)}{(W_{-1}(-e^{-x-1}))^{3} (2+3W_{0}(-e^{-x-1}))}$$

• slow roll parameter
$$\eta(\phi_{-/+}) = \frac{V''(\phi_{-/+})}{V(\phi_{-/+})} = -9 \frac{1+W_{0/-1}(-e^{-x-1})}{\frac{2}{3}+W_{0/-1}(-e^{-x-1})}$$
 [25]

successful inflation possible around the minimum from the inflection point

Inflation possibilities

• Friedmann equations with time replaced by the inflaton \Rightarrow

Hubble parameter $\rightarrow H'(\phi) = \mp \frac{1}{\sqrt{2}} \sqrt{3H^2(\phi) - V(\phi)}$

- slow-roll parameters: $\eta(\phi) = \frac{V''(\phi)}{V(\phi)}, \quad \epsilon(\phi) = \frac{1}{2} \left(\frac{V'(\phi)}{V(\phi)}\right)^2$
- number of e-folds by the end of inflation: $N(\phi) = \int_{\phi_{end}}^{\phi} \frac{d\phi}{\sqrt{2\epsilon}}$ Observational constraints at the horizon exit $\phi = \phi_*$:

1
$$N_* \simeq 50 - 60$$

- 2 spectral index of power spectrum $n_S 1 = 2\eta_* 6\epsilon_* \simeq -0.04$
- 3 amplitude of scalar perturbations $\mathcal{A}_{\mathcal{S}} = rac{V_*}{24\pi^2\epsilon_*} \simeq 2.2 imes 10^{-9}$

 \Rightarrow inflation possible around the minimum from the inflection point $_{\mbox{\tiny [20]}}$

dS vacuum metastability [23]

- through tunnelling $H_c > H_-$ Coleman de Luccia instanton
- over the barrier $H_c < H_-$ Hawking Moss transition

$$\begin{aligned} \frac{H_c^2}{H_-^2} &\equiv -\frac{3V''(\phi_+)}{4V(\phi_-)} \\ \text{HM region: } \Gamma \sim e^{-B} \text{ ; } B \simeq \frac{24\pi^2}{V} \frac{\Delta V}{V} \\ \frac{\Delta V}{V} \simeq 24\sqrt{2}x^{3/2} \Rightarrow \\ B \simeq 3 \times 10^9 \text{ for } x \simeq 3 \times 10^{-4} \end{aligned}$$

End of inflation with waterfall field

Hybrid scenario

$$V(\phi,S)=V(\phi)+rac{1}{2}m_S^2(\phi)S^2+rac{\lambda}{4}S^4$$

$$\begin{split} \phi &> \phi_c \quad : \quad m_S^2 > 0 \Rightarrow \langle S \rangle = 0, \qquad V(\phi, 0) = V(\phi) \\ \phi &< \phi_c \quad : \quad m_S^2 < 0 \Rightarrow \langle S \rangle = \pm \frac{|m_S|}{\sqrt{\lambda}}, \quad V(\phi, \langle S \rangle) = V(\phi) - \frac{m_S^4(\phi)}{4\lambda} \end{split}$$

 ϕ_c : near the minimum of $V(\phi)$

waterfall field S: open string state on D7-branes negative contribution to m_S^2 : from internal magnetic fluxes along the world-volumes [32]

I.A.-Lacombe-Leontaris '21

End of inflation with waterfall field

Example: $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$ with 3 sets of *D*7-branes

	(45) <mark>1</mark>	(67) <mark>2</mark>	(89) <mark>3</mark>		(45) <mark>1</mark>	(67) <mark>2</mark>	(89) <mark>3</mark>
$D7_1$	•	×	×	$D7_1$	•	\otimes	×
D72	×	•	×	 $D7_2$	×	•	\otimes
$D7_3$	×	×	•	D73	\otimes	×	•

Turn on magnetic fields: $H^{(i)}_{a}$ on the stack $D7_{a}$ along the *i*-th torus T_{i}^{2} Dirac quantisation condition:

$$m_a^{(i)} \int H_a^{(i)} = 2\pi n_a^{(i)} \Rightarrow H_a^{(i)} = 2\pi k_a^{(i)} / A_i \quad ; \quad k_a^{(i)} = n_a^{(i)} / m_a^{(i)} \in \mathbb{Q}$$

Frequency shift of charged oscillator modes:

$$\zeta_{a}^{(i)} = \frac{1}{\pi} \operatorname{Arctan}(2\pi \alpha' q_{a} H_{a}^{(i)}) \sim q_{a} \frac{k_{a}^{(i)}}{\mathcal{A}_{i}} \quad (\text{large area limit})$$

 $q_a = \pm 1, 0$: U(1) charges of open string endpoints

Masses of charged lower lying states

- same stack double charged (between brane and its orientifold image) $D7_a^{(i)}-D7_a^{(i)}: m^2 = -2|\zeta_a^{(i)}|$
- brane intersections $D7_a^{(i)} D7_b^{(j)}$: $m^2 = \pm (|\zeta_a^{(i)}| |\zeta_b^{(j)}|)$

Tachyon elimination \Rightarrow

- brane intersections: equality of magnetic fields $|\zeta_a^{(i)}|$
- same stack: turn-on (discrete) Wilson lines $A_a^{(i)}$; $|A_a^{(i)}|^2 = \alpha_a^2 / A_i$

and brane separations $x_a^{(i)}$; $|x_a^{(i)}|^2 = y_a^2 A_i$

$$\Rightarrow m^{2} = -2|\zeta_{a}^{(i)}| + |A_{a}^{(j)}|^{2} + |x_{a}^{(k)}|^{2}$$

Appearance of tachyons decreasing the volume \Rightarrow waterfall fields as open string states

 $\mathcal{A}_i \equiv r_i \mathcal{V}^{1/3}$ with $r_1 r_2 r_3 = 1 \Rightarrow$ (large volume)

$$m_{11}^2 \approx \left(-\frac{2|k_1^{(2)}|}{\pi r_2} + \frac{\alpha_1^2}{r_3} \right) \mathcal{V}^{-1/3} \quad ; \quad m_{33}^2 \approx \left(-\frac{2|k_3^{(1)}|}{\pi r_1} + \frac{\alpha_3^2}{r_2} \right) \mathcal{V}^{-1/3}$$
$$m_{22}^2 \approx -\frac{2|k_2^{(3)}|}{\pi r_3 \mathcal{V}^{1/3}} + y_2^2 r_2 \mathcal{V}^{1/3}$$

 $lpha_1$, $lpha_3$ can be arranged to make positive m_{11}^2 , m_{33}^2 for all ${\cal V}$

However m^2_{22} becomes tachyonic decreasing $\mathcal{V} \Rightarrow$ waterfall field

New mechanism of moduli stabilisation is string theory (type IIB)

- perturbative: weak coupling, large volume
- based on log corrections in the transverse volume of 7-branes due to local tadpoles induced by localised gravity kinetic terms arising only in 4 dimensions!
- can lead to de Sitter vacua in string theory explicit counter-example to dS swampland conjecture
- inflation possible around the minimum from the inflection point
- realisation of hybrid inflation to lower the vacuum energy