Principles of integrability by examples/applications

18-9-2019, Pisa PRIN Kick-off Meeting
Davide Fioravantí (INFN-Bologna)
series of paper with M.Rossi,JE Bourgine, D.Gregori, A. Bonini, H.Poghossian,....

- Sketch of a PLAN in integrable words :
- 1) Motivations: different research topics (e.g. WL string minimal area) lead us to Thermodynamic Bethe Ansatz in the ODE/IM perspective
- 2) Traditional (scattering) way to TBA (I way)
-3) ODE/IM and PDE/IM: functional and integral eqs. (Il way to TBA)
- 4) OPE or Form Factor Series for null polygonal WLs re-sums to TBA: Ill way

Some motivations and perspectives

- General wall-crossing (jumping) formulae (Donaldson-Thomas invariants) e.g. by KontsevichSoibelman have taken a very effective form for BPS states (compactified theories) thanks to Gaiotto-Moore-Neítzke (2008)
-

$$
\begin{equation*}
\mathcal{X}_{\gamma}(\zeta)=\mathcal{X}_{\gamma}^{\mathrm{sf}}(\zeta) \exp \left[-\frac{1}{4 \pi i} \sum_{\gamma^{\prime}} \Omega\left(\gamma^{\prime} ; u\right)\left\langle\gamma, \gamma^{\prime}\right\rangle \int_{\ell_{\gamma^{\prime}}} \frac{d \zeta^{\prime}}{\zeta^{\prime}} \frac{\zeta^{\prime}+\zeta}{\zeta^{\prime}-\zeta} \log \left(1-\sigma\left(\gamma^{\prime}\right) \mathcal{X}_{\gamma^{\prime}}\left(\zeta^{\prime}\right)\right)\right] \tag{5.13}
\end{equation*}
$$

- which are nothing but TBA EQS. In fact more that one year later, enriched perspective
- Note added Nov. 20, 2009:

It was pointed out to us some time ago by A. Zamolodchikov that one of the central results of this paper, equation (5.13), is in fact a version of the Thermodynamic Bethe Ansatz [45]. In this appendix we explain that remark. Another relation between fourdimensional super Yang-Mills theory and the TBA has recently been discussed by Nekrasov and Shatashvili [46].

The TBA equations for an integrable system of particles a with masses m_{a}, at inverse \sum temperature β, with integrable scattering matrix $S_{a b}\left(\theta-\theta^{\prime}\right)$, where θ is the rapidity, are
circumference R^{4}

$$
\begin{equation*}
\epsilon_{a}(\theta)=m_{a} \beta \cosh \theta-\sum_{b} \int_{-\infty}^{+\infty} \frac{d \theta^{\prime}}{2 \pi} \phi_{a b}\left(\theta-\theta^{\prime}\right) \log \left(1+e^{\beta \mu_{b}-\epsilon_{b}\left(\theta^{\prime}\right)}\right) \tag{E.1}
\end{equation*}
$$

where $\phi_{a b}(\theta)=-i \frac{\partial}{\partial \theta} \log S_{a b}(\theta)$. Here the scattering matrix is diagonal, that is, the soliton creation operators obey $\Phi_{a}(\theta) \Phi_{b}\left(\theta^{\prime}\right)=S_{a b}\left(\theta-\theta^{\prime}\right) \Phi_{b}\left(\theta^{\prime}\right) \Phi_{a}(\theta)$.

- Hitchin systems: the same mathematical problem as for minimal string area for gluon scattering amplitudes/wilson loops (null, polygonal) in $N=4$ SYM
- Benefit for exchange of ideas between these fields and from integrability ideas (non-perturbative, exact, ect) which makes clear the following:
- The general phenomenon on the background is the so-called linear Ordinary Differential Equation/Integrable Model (ODE/IM) correspondence (CFTs), possibly extended to linear PDE (Massive QFTs)
- Recently we proposed an advance (different ODE) which identifies NS (SW with one Omega background) periods with integrable quantities T,Q: functional and integral eqs. Pandora box? I will give you a flavour.
- We re-summed the OPE (FF) series of Wl (collinear limit) to TBA: why?
- Before that, let us recall the original physics of TBA.

The Thermodynamic Bethe Ansatz

- Evolution of Zamolodchikov's idea to non-relativistic theories, where the scattering matrix does not change (as depends on difference of rapidities which are all shifted).
- A cylinder (p.b.c.: torus) of very large height R (time) and circumference L (space) may be seen in the other way around:

$$
L(\text { space }) \leftrightarrow R(\text { time }) \quad p \leftrightarrow E \quad A B A(\text { direct }) \rightarrow A \tilde{B} A(\text { mirror })
$$

i.e. analytic continuation which entails the same partition function

$$
Z_{\text {direct }}(L, R)=\tilde{Z}_{\text {mirror }}(L, R)
$$

- Advantage: asymptotic BA exact in the mirror theory at $R=\infty$, then thermodynamics for minimal free energy at 'temperature' $T=1 / L$

$$
\exp \left[-R E_{0}(L)\right]=\exp \left[-R L \tilde{f}_{\min }(L)\right], R \rightarrow \infty
$$

furnishes the ground state energy of direct (string/gauge) theory $E_{0}(L)$.

- Infinite system of non-linear (real) integral equations and $E(L)$ is a non-linear functional on the real rapidity u summed up on infinite pseudoenergies $\epsilon_{Q}(u)$ (massive nodes).

Mirror (tilde)
$R_{\text {long }}$
$A \tilde{B} A$ (mirror)

Direct: $\operatorname{Tr}\left(Z^{\wedge} L\right)$ or $\operatorname{Tr}(\ldots)+\ldots$

Vacuum/Excited states Thermodynamic Bethe Ansatz

- Vacuum equations of the form

$$
\epsilon_{a}(u)=\mu_{a}+\tilde{e}_{a}(u)-\sum_{b} \int d v K_{a, b}(u, v) \ln \left(1+e^{-\epsilon_{b}(v)}\right)
$$

with mirror energy $\tilde{e}_{a}(u)$ as driving term and scattering factors

$$
K_{a, b}(u, v) \propto \partial_{v} \ln S_{a, b}(u, v)
$$

- Excited states $E(L)$ are connected to the vacuum by analytic continuation in some parameter (e.g. μ_{a} and L) \Rightarrow additional inhomogeneous terms in the equations $\sum_{i} \ln S_{a, b}\left(u, u_{i}\right)$ depending on TBA complex singularities u_{i} :

$$
e^{-\epsilon_{a}\left(u_{i}\right)}=-1
$$

these are the exact Bethe roots (with wrapping).

- \Rightarrow Delicate and massive numerical work for analytic continuation.

Excited states via the Y -system

- Alternative route: for simpler integrable theories (like quantum Sine-Gordon) we proposed and checked all the states - including the ground state! - must satisfy the same functional equations, the so-called Y-system:

$$
Y_{a}(u) \equiv e^{-\epsilon_{a}(u)}
$$

In a nutshell, we loose the information concerning the inhomogeneous terms as they are zero-modes of the 'TBA-operator' (a multi-shift operator with incidence matrix), i.e. In $S_{a, b}\left(u, u_{i}\right)$ (sort of solution of Y-system). Universal, but we recover the specific forcing term/state by behaviour at $u= \pm \infty$. Besides, these terms form the Aymptotic Bethe Ansatz, once the non-linear integrals are forgotten. No true systematics.

- Novelty:additional discontinuity equations on the cuts of the rapidity u-planes. We 'derived' the dressing factor from these relations (limitation of this 'explanation').

The Y-system

- It is the Y-system (not the TBA) which is encoded in a Dynkin-like diagram.
- I seat on a node: $\mathrm{LHS}=Y_{e}\left(u-\frac{i}{g}\right) Y_{e}\left(u+\frac{i}{g}\right)=$
- $R H S=$ Nearest neighbours products:
- Horizontal: $\prod_{Q}\left(1+Y_{Q}(u)\right)^{A_{Q e}}$

Figure 1: The Y-system diagram corresponding to the $\mathrm{AdS}_{5} / \mathrm{CFT}_{4} \mathrm{TBA}$ equations.

$$
Y_{Q}\left(u-\frac{i}{g}\right) Y_{Q}\left(u+\frac{i}{g}\right)=\prod_{Q^{\prime}}\left(1+Y_{Q^{\prime}}(u)\right)^{A_{Q Q^{\prime}}} \prod_{\alpha} \frac{\left(1+\frac{1}{Y_{(v \mid Q-1)}^{(\alpha)}(u)}\right)^{\delta_{Q, 1}-1}}{\left(1+\frac{1}{Y_{(y \mid-)}^{(\alpha)}(u)}\right)^{\delta_{Q, 1}}}
$$

$$
\begin{aligned}
& Y_{(y \mid-)}^{(\alpha)}\left(u+\frac{i}{g}\right) Y_{(y \mid-)}^{(\alpha)}\left(u-\frac{i}{g}\right)=\frac{\left(1+Y_{(v \mid 1)}^{(\alpha)}(u)\right)}{\left(1+Y_{(w \mid 1)}^{(\alpha)}(u)\right)} \frac{1}{\left(1+\frac{1}{Y_{1}(u)}\right)} \\
& Y_{(w \mid M)}^{(\alpha)}\left(u+\frac{i}{g}\right) Y_{(w \mid M)}^{(\alpha)}\left(u-\frac{i}{g}\right)=\prod_{N}\left(1+Y_{(w \mid N)}^{(\alpha)}(u)\right)^{A_{M N}}\left[\frac{\left(1+\frac{1}{Y_{(y \mid-)}^{(\alpha)}(u)}\right)}{\left(1+\frac{1}{Y_{(y \mid+)}^{(\alpha)}(u)}\right)}\right]^{\delta_{M, 1}}, \\
& Y_{(v \mid M)}^{(\alpha)}\left(u+\frac{i}{g}\right) Y_{(v \mid M)}^{(\alpha)}\left(u-\frac{i}{g}\right)=\frac{\prod_{N}\left(1+Y_{(v \mid N)}^{(\alpha)}(u)\right)^{A_{M N}}}{\left(1+\frac{1}{Y_{M+1}(u)}\right)}\left[\frac{\left(1+Y_{(y \mid-)}^{(\alpha)}(u)\right)}{\left(1+Y_{(y \mid+)}^{(\alpha)}(u)\right)}\right]^{\delta_{M, 1}},
\end{aligned}
$$

where $A_{1, M}=\delta_{2, M}, A_{N M}=\delta_{M, N+1}+\delta_{M, N-1}$ and $A_{M N}=A_{N M}$.

$$
\begin{aligned}
& \Delta(u)=\left[\ln Y_{1}(u)\right]_{+1}, \quad[\Delta]_{ \pm 2 N}=\mp \sum_{\alpha=1,2}\left(\left[\ln \left(1+\frac{1}{Y_{(y \mid+)}^{(\alpha)}}\right)\right]_{ \pm 2 N}+\sum_{M=1}^{N}\left[\ln \left(1+\frac{1}{Y_{(v \mid M)}^{(\alpha)}}\right)\right]_{ \pm(2 N-M)}+\ln \left(\frac{Y_{(v)-1}^{(\alpha)}}{Y_{(v \mid+1)}^{(\alpha)}}\right)\right) \text {, } \\
& {\left[\ln \left(\frac{Y_{(y)-1}^{(\alpha)}}{Y_{(y \mid+)}^{(\alpha)}}\right)\right]_{ \pm 2 N}=-\sum_{Q=1}^{N}\left[\ln \left(1+\frac{1}{Y_{Q}}\right)\right]_{ \pm(2 N-Q)},}
\end{aligned}
$$

with $N=1,2, \ldots, \infty$ and

$$
\left[\ln Y_{(w \mid 1)}^{(\alpha)}\right]_{ \pm 1}=\ln \left(\frac{1+1 / Y_{(y)-)}^{(\alpha)}}{1+1 / Y_{(y \mid+)}^{(\alpha)}}\right), \quad\left[\ln Y_{(v \mid 1)}^{(\alpha)}\right]_{ \pm 1}=\ln \left(\frac{1+Y_{(y)-1}^{(\alpha)}}{1+Y_{(| |+)}^{(\alpha)}}\right),
$$

where the symbol $\left[f f_{z}\right.$ with $Z \in \mathbb{Z}$ denotes the discontinuity of $f(z)$

$$
[f]_{Z}=\lim _{\epsilon \rightarrow 0^{+}} f(u+i Z / g+i \epsilon)-f(u+i Z / g-i \epsilon)
$$

ODE/IM Correspondence: a quick

review (Dorey,Tateo,BLZ,Dunning,Suzuki,Frenkel,Bender.....)

- Simplest example: Schroedinger eq. on the half line $(0, \infty)$ (Stokes line)
-

$$
\left(-\frac{d^{2}}{d x^{2}}+x^{2 M}+\frac{l(l+1)}{x^{2}}\right) \psi(x)=E \psi(x)
$$

- we fix the subdominant solution such that at complex infinity

$$
\begin{aligned}
& y \sim x^{-M / 2} \exp \left(-\frac{1}{M+1} x^{M+1}\right) \\
& y^{\prime} \sim-x^{M / 2} \exp \left(-\frac{1}{M+1} x^{M+1}\right)
\end{aligned}
$$

$$
\arg x \left\lvert\,<\frac{3 \pi}{2 M+2}\right.
$$

Discrete Symmetry Breaking

- Omega symmetry of the eq. not of the solution which rotates by $\omega=\exp (\pi i /(M+1))=q$, quantum group
- $\hat{\Omega}\left(x \rightarrow q x, E \rightarrow q^{-2} E\right) l \rightarrow l \quad y_{k} \equiv y_{k}(x, E, l)=\omega^{k / 2} y\left(\omega^{-k} x, \omega^{2 k} E, l\right)$
- $\quad y_{k}$ subdominant in \mathscr{S}_{k} and dominant in $\mathscr{S}_{k \pm 1}$
- around infinity, írregular singularity.
- Lambda symmetry, around zero, regular síngularity:
- $\hat{\Lambda}: x \rightarrow x, \quad E \rightarrow E, \xrightarrow{-1-1} \hat{1} \psi^{ \pm}=\psi^{\mp} \quad \psi^{+}(x, E, l) \sim x^{l+1}+O\left(x^{l+3}\right)$

Transfer matrix T, Q and various functional equations

- Stokes multipliers
- $\quad y_{k-1}(x, E, l)=C_{k}(E, l) y_{k}(x, E, l)+\tilde{C}_{k}(E, l) y_{k+1}(x, E, l)$
- Wronskian interpretation, $k=0$
-

$$
C=\frac{W_{-1,1}}{W_{0,1}}, \quad \tilde{C}=-\frac{W_{-1,0}}{W_{0,1}}
$$

- essentially by using the leading asymptotics
all of the \tilde{C}_{k} are identically equal to -1

$$
C(E, l)=\frac{1}{2 i} W_{-1.1}(E, l)
$$

$$
C(E, l) y(x, E, l)=\omega^{-1 / 2} y\left(\omega x, \omega^{-2} E, l\right)+\omega^{1 / 2} y\left(\omega^{-1} x, \omega^{2} E, l\right)
$$

- If $\mid=0$, no singularity in $x=0$, then Baxter TQ-relation

$$
\mathbf{T}(\lambda) \mathbf{Q}_{ \pm}(\lambda)=\mathbf{Q}_{ \pm}\left(q^{-1} \lambda\right)+\mathbf{Q}_{ \pm}(q \lambda)
$$

- but keeping $l \neq 0$, I would expect

$$
C(E, l) D^{\mp}(E, l)=\omega^{\mp(1 / 2+l)} D^{\mp}\left(\omega^{-2} E, l\right)+\omega^{ \pm(1 / 2+l)} D^{\mp}\left(\omega^{2} E, l\right)
$$

- In fact transport (Jost) coefficients

$$
D^{\mp}(E, l) \equiv W\left[y(x, E, l), \psi^{ \pm}(x, E, l)\right]
$$

- are projections on the psi. Scattering theory $(0, \infty)$
- From the TQ relation or the QQ-system (more fundamental), $n=0(n=1$ definition of $T)$ of
- $\quad(4 l+2) i C^{(n)}(E)=\omega^{(n+1)(l+1 / 2)} D^{-}\left(\omega^{n+1} E, l\right) D^{+}\left(\omega^{-n-1} E, l\right)$

$$
-\omega^{-(n+1)(l+1 / 2)} D^{-}\left(\omega^{-n-1} E, l\right) D^{+}\left(\omega^{n+1} E, l\right)
$$

- the whole integrability machinery develops functional equations; here we just need pay attention to their derivation/interpretation from the ODE
- Fused T relations
-

$$
\mathbf{T}(\lambda) \mathbf{T}_{j}\left(q^{j+1 / 2} \lambda\right)=\mathbf{T}_{j-1 / 2}\left(q^{j+1} \lambda\right)+\mathbf{T}_{j+1 / 2}\left(q^{j} \lambda\right)
$$

or

$$
\mathbf{T}(\lambda) \mathbf{T}_{j}\left(q^{-j-1 / 2} \lambda\right)=\mathbf{T}_{j-1 / 2}\left(q^{-j-1} \lambda\right)+\mathbf{T}_{j+1 / 2}\left(q^{-j} \lambda\right)
$$

- which brings the TT-system or discrete Hirota eq.

$$
\mathbf{T}_{j}\left(q^{-1 / 2} \lambda\right) \mathbf{T}_{j}\left(q^{1 / 2} \lambda\right)=\mathbf{1}+\mathbf{T}_{j+1 / 2}(\lambda) \mathbf{T}_{j-1 / 2}(\lambda)
$$

with the ODE identification with the Wronskian

$$
T_{n / 2}\left(\nu E^{1 / 2}\right)=C^{(n)}(E)=\frac{1}{2 i} W_{-1, n}\left(\omega^{-n+1} E\right)
$$

- Finally the γ-system for the gauge invariant quantity

$$
Y_{n}(E)=C^{n+1}(E) C^{n-1}(E)
$$

- which easily brings the T-system into the form

$$
Y_{n}(\omega E) Y_{n}\left(\omega^{-1} E\right)=\left(1+Y_{n+1}(E)\right)\left(1+Y_{n-1}(E)\right)
$$

- Upon inverting the shift operator on the l.h.s., and using a suitable asymptotic as zero-mode, we can obtain non-linear integral equations with universal kernel $1 /$ cosh, equivalent to physical TBA eqs.

2D CFT dictionary

- Eigenvalues of statistical mechanics operators Q and T on the conformal primary (dimension)

$$
\Delta=\left(\frac{p}{\beta}\right)^{2}+\frac{c-1}{24} \quad p=\frac{2 l+1}{4 M+4}
$$

- with 'minimal model' central charge

$$
\begin{aligned}
c=13-6\left(\beta^{2}+\beta^{-2}\right) & \beta^{2}=\frac{1}{M+1} \quad \text { Sine-Gordon coupling } \\
q & =e^{i \pi \beta^{2}}
\end{aligned}
$$

T, Q and the SW NS periods

- Via AGT correspondence we quantise/deform the quadratic SW differential by the level 2 null vector eq. (Mathieu)
-

$$
-\frac{\hbar^{2}}{2} \frac{d^{2}}{d z^{2}} \psi(z)+\left[\Lambda^{2} \cos z-u\right] \psi(z)=0
$$

- Namely, quantum SW differential $\mathcal{P}(z)=-i \frac{d}{d z} \ln \psi(z)$ and periods
-

$$
a(\hbar, u, \Lambda)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathcal{P}(z ; \hbar, u, \Lambda) d z, \quad a_{D}(\hbar, u, \Lambda)=\frac{1}{2 \pi} \int_{-\arccos \left(u / \Lambda^{2}\right)-i 0}^{\arccos \left(u / \Lambda^{2}\right)-i 0} \mathcal{P}(z ; \hbar, u, \Lambda) d z
$$

- ODE/IM treatment of this eq. goes its non-compact (modified) version: two írregular singularities ($M=-2$)
-

$$
\left\{-\frac{d^{2}}{d y^{2}}+2 e^{2 \theta} \cosh y+P^{2}\right\} \psi(y)=0
$$

- Gauge/integrability change of variable

$$
\frac{\hbar}{\Lambda}=e^{-\theta}, \quad \frac{u}{\Lambda^{2}}=\frac{P^{2}}{2 e^{2 \theta}}
$$

- Integrability/gauge identification
-

$$
\begin{aligned}
& T(\hbar, u, \Lambda) \equiv T\left(\theta, P^{2}\right)=2 \cos \{2 \pi a(\hbar, u, \Lambda)\} \\
& Q\left(\theta, P^{2}\right) \equiv Q(\hbar, u, \Lambda)=\exp \left\{2 \pi \mathrm{i} a_{D}(\hbar, u, \Lambda)\right\}
\end{aligned}
$$

- The $Y=Q^{2}$ system

$$
1+Q^{2}\left(\theta, P^{2}\right)=Q\left(\theta-i \pi / 2, P^{2}\right) Q\left(\theta+i \pi / 2, P^{2}\right), \quad 1+Q^{2}(\theta, u)=Q(\theta-i \pi / 2,-u) Q(\theta+i \pi / 2,-u)
$$

- from which TBA eq.
-

$$
\begin{aligned}
\varepsilon(\theta, u, \Lambda) & =-4 \pi i a_{D}^{(0)}(u, \Lambda) \frac{e^{\theta}}{\Lambda}-2 \int_{-\infty}^{\infty} \frac{\ln \left[1+\exp \left\{-\varepsilon\left(\theta^{\prime},-u, \Lambda\right)\right\}\right]}{\cosh \left(\theta-\theta^{\prime}\right)} \frac{d \theta^{\prime}}{2 \pi} \\
\varepsilon(\theta,-u, \Lambda) & =-4 \pi i \underbrace{a_{D}^{(0)}(-u, \Lambda)}_{d y o n} \frac{e^{\theta}}{\Lambda}-2 \int_{-\infty}^{\infty} \frac{\ln \left[1+\exp \left\{-\varepsilon\left(\theta^{\prime}, u, \Lambda\right)\right\}\right]}{\cosh \left(\theta-\theta^{\prime}\right)} \frac{d \theta^{\prime}}{2 \pi}
\end{aligned}
$$

- TQ-system and periodicity of T are the quantum Bilal-Ferrari ($u \rightarrow-u$ symmetry breaking $)$
$T\left(\theta, P^{2}\right)=\frac{Q\left(\theta-i \pi / 2, P^{2}\right)+Q\left(\theta+i \pi / 2, P^{2}\right)}{Q\left(\theta, P^{2}\right)}, \quad T(\theta, u)=\frac{Q(\theta-i \pi / 2,-u)+Q(\theta+i \pi / 2,-u)}{Q(\theta, u)}$
- asymptotic expansion into quantum periods ($n=0$ is $S W$)
-

$$
a_{D}^{(n)}(-u)=i(-1)^{n}\left[-\operatorname{sgn}(\operatorname{Im} u) a_{D}^{(n)}(u)+a^{(n)}(u)\right]
$$

- Unexpected surprise

$$
\left\{-\frac{d^{2}}{d y^{2}}+e^{2 \theta}\left(e^{y / b}+e^{-y b}\right)+P^{2}\right\} \psi(y)=0
$$

- previous eq. is the $b=1$ case describes Liouville field theory vacua
- $\Delta=(c-1) / 24-P^{2} \quad c=1+6\left(b+b^{-1}\right)^{2}$
- Self-dual point of the symmetry $b \rightarrow 1 / b$! And somehow prevíous $\beta=i$ ib
- Coincidence? Meaning of this Liouville field theory?

A third way to TBA: the OPE for null polygonal WLs

- Theory: $\mathrm{N}=4$ SYM in planar limit $\lambda=N_{c} g_{Y M}^{2}, N_{c} \rightarrow \infty$
- Dual to quantum area of $11 B$ string theory on $A d S_{5} \times S^{5}$
- Light-like polygons can be decomposed into light-like Pentagons (and Squares): an Operator Product Expansion
- Prototype: Hexagon into two Pentagons P
- The same as two-point correlation function $<P P>$ into Form-Factors in quantum integrable 2D field theories
- In a picture:

hexagon

- Which mathematically means:
- $W=\boldsymbol{\Sigma} \exp (-\mathrm{rE})<\mathrm{O}|\mathrm{P}| \mathrm{n}><\mathrm{n}|\mathrm{P}| O>\quad$ Multi-P correlation function:general m, n transition
- $=\langle P P\rangle$: the same as 2 D Form Factor (FF) decomposition
- Form-Factors obey axioms with the S-matrix: 1)Watson eqs., 2) Monodromy $(q-K Z), 3)$ Kinematic Poles, 4) Bound-state eqs. etc.
- We had to modify the 2) (and 3)) (for twist fields)
- Eigen-states $\ln >$? 2D excitations over the GKP folded string (of length $=2 \ln$ 5) which stretches from the boundary to boundary (for large s) of AdS.
- The quantum GKP string can be represented by the quantum spin chain vacuum (gauge)

$$
\Omega_{G K P}=\operatorname{Tr} Z D_{+}^{s} Z+\ldots
$$

-2D particles: 6 scalars, 2 gluons, $4+4$ (anti) fermions Bethe states:

$$
\mathcal{O}_{1-\text { particle }}=\operatorname{Tr} Z D_{+}^{s-s^{\prime}} \varphi D_{+}^{s^{\prime}} Z+\ldots
$$

$\varphi=Z, W, X, F_{+\perp}, \bar{F}_{+\perp}, \Psi_{+}, \bar{\Psi}_{+} \quad$ Dispersion relation

- Scattering over the GKP vacuum:

$$
\mathcal{O}_{2-\text { partices }}=\operatorname{Tr} Z D_{+}^{s-s_{1}-s_{2}} \varphi_{1} D_{+}^{s_{1}^{s}} \varphi_{2} D_{+}^{s_{1}} Z+\ldots
$$

- Two-body is enough because of integrability

FFs series summing to TBA

- Quite unique example of Form-Factor series resummation. Result: thermodynamic bubble Ansatz of string minimal area at strong coupling (Alday-Gaiotto-Maldacena)
- The key idea: Hubbard-Stratonovich transformation replaces the infinite sums with a path integral

$$
\begin{array}{r}
S^{(g)}\left[X^{g}\right]=\frac{1}{2} \int d \theta d \theta^{\prime} X^{g}(\theta) T^{g}\left(\theta, \theta^{\prime}\right) X^{g}\left(\theta^{\prime}\right)+ \\
+\int \frac{d \theta^{\prime}}{2 \pi} \mu^{g}\left(\theta^{\prime}\right)\left[\operatorname{Li}_{2}\left(-e^{-E\left(\theta^{\prime}\right)+i \phi} e^{X^{g}\left(\theta^{\prime}\right)}\right)+\mathrm{Li}_{2}\left(-e^{-E\left(\theta^{\prime}\right)-i \phi} e^{X^{g}\left(\theta^{\prime}\right)}\right)\right]
\end{array}
$$

- $S^{(\theta)}\left[X^{g}\right] \sim \sqrt{\lambda} \rightarrow \infty$: saddle point eqs. are TBA eqs.

$$
X^{g}(\theta)-\int \frac{d \theta^{\prime}}{2 \pi} G^{g}\left(\theta, \theta^{\prime}\right) \mu^{g}\left(\theta^{\prime}\right) \log \left[\left(1+e^{X^{g}\left(\theta^{\prime}\right)} e^{-E\left(\theta^{\prime}\right)+i \phi}\right)\left(1+e^{X^{g}\left(\theta^{\prime}\right)} e^{-E\left(\theta^{\prime}\right)-i \phi}\right)\right]=0
$$

- For the simplest hexagon, equivalent to the $A 3$ TBA (A. Zamolod chikov).
-We also reproduced the general E-gon: $A 3 \times(E-5$ columns): delicate determination of the convolution integration contours
- We reproduced TBA with only gluons and 'mesons' (world-sheet meson is a 2D fermion-antifermion bound state only at strong coupling, other particle contribution is superficially i-loop)
- New way to consider: 1) TBA from spectral series which gives rise to a YangYang functional ($=a r e a$) (similar to how it arises in $N=2$ SYM (NekrasovShatashivili); but here 2)PDE/quantum Integrable Model, PDE is a classical Lax pair.
- Very recently we have found ODE/IM also for NS regime.
-Weak coupling (gauge) results: tree level and 1-loop (Basso,Sever, Verarat Perimeter). 2loops (Dixon,Drummonde tal) by using field theory methods.

Scalars contribution scales as

$$
\ln W=\frac{\sqrt{\lambda}}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n)!} \int^{2 n-1} \prod_{i=1}^{2 \pi} \frac{d \alpha_{i}}{2 \pi} g^{(2 n)}\left(\alpha_{1}, \ldots, \alpha_{2 n-1}\right)+O(\ln \sqrt{\lambda})
$$

- the same order as the classical minimal area: $-\frac{\sqrt{\lambda}}{2 \pi} A_{E}$
- Check with Knizhnik twist field dimension

$$
\Delta_{\alpha}=\frac{c}{12}(k-1 / k), \alpha=2 \pi k-2 \pi=\pi / 2, c=5
$$

- and we can also compute beyond leading: new feature is divergency (asymptotic freedom of O(6) NL Sigma Model).

Some Perspectives

- Non-linear integral or functional equations are powerful and are the monodromies of a ODE or PDE. There is any deep reason why these (TBA) are reproduced by an integrable Form Factor series of a 'weird' scattering theory?
- Saddle point: classical string \rightarrow Quantisation? Quantum PDE/IM? qTBA?
- NS limit $\epsilon_{2}=0:$ ODE $/ I M \epsilon_{1}=\hbar \longrightarrow \epsilon_{2} \neq 0$: quantum ODE/IM?
- On the contrary: meaning of $b \neq 1$ of our Liouville field theory (not AGT)?
- Formal similarity between OPE series and $N=2$ (Nekrasov) partition function: e.g. ADHM set-up: meaning? With Poghossians.

Thanks

