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Sketch of a PLAN in integrable words :  

1)Motivations: different research topics (e.g. WL 
string minimal area) lead us to Thermodynamic 
Bethe Ansatz in the ODE/IM perspective 

2) Traditional (scattering) way to TBA (I way) 

3) ODE/IM and PDE/IM: functional and integral 
eqs. (II way to TBA) 

4) OPE or Form Factor Series for null polygonal 
WLs re-sums to TBA: III way 



Some motivations and perspectives

General wall-crossing (jumping) formulae (Donaldson-Thomas invariants) e.g. by Kontsevich-
Soibelman have taken a very effective form for BPS states (compactified theories) thanks to Gaiotto-
Moore-Neitzke (2008) 

  

which are nothing but TBA EQS. In fact more that one year later, enriched perspective  

 

the reality condition (5.4). Hence a solution of (5.11) is a solution of the Riemann-Hilbert

problem.14

Using the explicit form of the Kontsevich-Soibelman factors from (2.16), we have

(XSℓ)γ = Xγ
∏

γ′∈(Γu)ℓ

(1 − σ(γ′)Xγ′)
Ω(γ′;u)⟨γ,γ′⟩ (5.12)

(with (Γu)ℓ defined in (5.5)). Plug this into (5.11) to get the final integral equation for X :

Xγ(ζ) = X sf
γ (ζ) exp

⎡

⎣−
1

4πi

∑

γ′

Ω(γ′;u)⟨γ, γ′⟩

∫

ℓγ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1 − σ(γ′)Xγ′(ζ

′))

⎤

⎦ .

(5.13)

As we have mentioned, equation (5.13) is a form of the Thermodynamic Bethe Ansatz. See

Appendix E.

In Appendix C we argue that (5.13) has a solution for sufficiently large R, and describe

its expansion as R → ∞ for u away from the walls. The first nontrivial approximation is

Xγ(ζ) ∼ X sf
γ (ζ) exp

⎡

⎣−
1

4πi

∑

γ′

Ω(γ′;u)⟨γ, γ′⟩

∫

ℓγ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1 − σ(γ′)X sf

γ′ (ζ
′))

⎤

⎦ ,

(5.14)

and is essentially a linear superposition of the 1-instanton corrections that we found in the

abelian theory. Higher-order corrections involve multilinears in the Ω(γ′;u), and have an

R dependence which identifies them as multi-instanton contributions.

Our arguments in Appendix C are closely related to ones given in [11] in the finite-

dimensional tt∗ context. In fact, our approach leads to a simplification of the asymptotic

analysis even in the finite-dimensional case; hence in Appendix C we re-analyze that case

as well.

Global issues

By solving the Riemann-Hilbert problem, we have obtained a map X : M̃u → T̃u depending

on the choice of the local quadratic refinement σ(γ). This choice affects the Riemann-

Hilbert problem through the definition of the discontinuities Kγ . However, the solution

X depends on σ in a simple way. Recall that for any two refinements σ,σ′ there is some

c(σ,σ′) ∈ Γ∗
u/2Γ∗

u such that σ(γ)σ′(γ) = (−1)γ·c(σ,σ
′). Given a solution X [σ] of (5.11) with

refinement σ, there is a corresponding solution X [σ′] with refinement σ′,

X [σ′]
γ (u, θ; ζ) = (−1)γ·c(σ,σ

′)X [σ]
γ (u, θ + cπ; ζ). (5.15)

It follows that if we use the refinement to identify M̃u ≃ Mu and also T̃u ≃ Tu, we obtain

X : Mu → Tu which is independent of the choice of refinement.

14Note that although the Riemann-Hilbert problem is invariant under diffeomorphisms of fMu the equa-

tion (5.11) is not; its solution is unique, not unique up to diffeomorphism.
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and expand it in powers of ζ. This gives three equations:

R∂RA
(−1)
ζ − [A(0)

R ,A(−1)
ζ ] = [A(0)

ζ ,A(−1)
ζ ] + A(−1)

ζ , (D.7)

R∂RA
(0)
ζ − [A(0)

R ,A(0)
ζ ] = 2[A(1)

ζ ,A(−1)
ζ ], (D.8)

R∂RA
(1)
ζ − [A(0)

R ,A(1)
ζ ] = [A(1)

ζ ,A(0)
ζ ] + A(1)

ζ . (D.9)

These equations are strongly reminiscent of the Nahm equations, differing from them only

by the two extra linear pieces on the right hand side. These extra pieces are dominant at

large radius. An alternative strategy to derive the large R asymptotics is again an iterative

solution of these three equations around the semiflat solution.

Another interesting set of “isomonodromic” equations can be derived by similarly

expanding [∂u −Au, ζ∂ζ −Aζ ] = 0:

0 = [A(−1)
u ,A(−1)

ζ ], (D.10)

∂

∂u
A(−1)
ζ − [A(0)

u ,A(−1)
ζ ] = [A(−1)

u ,A(0)
ζ ] −A(−1)

u , (D.11)

∂

∂u
A(0)
ζ − [A(0)

u ,A(0)
ζ ] = [A(−1)

u ,A(1)
ζ ], (D.12)

∂

∂u
A(1)
ζ − [A(0)

u ,A(1)
ζ ] = [A(1)

u ,A(0)
ζ ] + A(−1)

u , (D.13)

0 = [A(1)
u ,A(1)

ζ ]. (D.14)

E. A relation to the Thermodynamic Bethe Ansatz

Note added Nov. 20, 2009:

It was pointed out to us some time ago by A. Zamolodchikov that one of the central

results of this paper, equation (5.13), is in fact a version of the Thermodynamic Bethe

Ansatz [45]. In this appendix we explain that remark. Another relation between four-

dimensional super Yang-Mills theory and the TBA has recently been discussed by Nekrasov

and Shatashvili [46].

The TBA equations for an integrable system of particles a with masses ma, at inverse

temperature β, with integrable scattering matrix Sab(θ − θ′), where θ is the rapidity, are

ϵa(θ) = maβ cosh θ −
∑

b

∫ +∞

−∞

dθ′

2π
φab(θ − θ′) log(1 + eβµb−ϵb(θ′)) (E.1)

where φab(θ) = −i ∂∂θ log Sab(θ). Here the scattering matrix is diagonal, that is, the soliton

creation operators obey Φa(θ)Φb(θ′) = Sab(θ − θ′)Φb(θ′)Φa(θ).

We can put the logarithm of (5.13) in the form of (E.1) as follows. Clearly the particle

labels a, b, . . . correspond to γ, γ′, . . . . Now let Zγ = eiαγ |Zγ |, where αγ is real and only

defined modulo 2π. For any γ we can make the change of variables ζ = −eiαγ+θ, so that

the BPS ray ℓγ is mapped out by −∞ < θ < ∞. Under this change of variables the semiflat

coordinate (3.11) becomes

logX sf
γ = −2πR|Zγ | cosh θ + iϕγ . (E.2)
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circumference R

more general



Hitchin systems: the same mathematical problem as for minimal string area 
for gluon scattering amplitudes/Wilson loops (null, polygonal) in N=4 SYM 

Benefit for exchange of ideas between these fields and from integrability 
ideas (non-perturbative, exact, ect)which makes clear the following: 

The general phenomenon on the background is the so-called  linear 
Ordinary Differential Equation/Integrable Model (ODE/IM) 
correspondence (CFTs), possibly extended to linear PDE (Massive QFTs) 

Recently we proposed an advance (different ODE) which identifies NS 
(SW with one Omega background) periods with integrable quantities T,Q: 
functional and integral eqs. Pandora box? I will give you a flavour. 

We re-summed the OPE (FF) series of Wl (collinear limit) to TBA: why?     

Before that, let us recall the original physics of TBA. 



Overview with two research lines 1: Scaling functions via LIEs 2: Short operators via the Thermodynamic Bethe Ansatz An exercise and some details. Summary and Perspectives

The Thermodynamic Bethe Ansatz
I Evolution of Zamolodchikov’s idea to non-relativistic theories, where the

scattering matrix does not change (as depends on difference of
rapidities which are all shifted).

I A cylinder (p.b.c.: torus) of very large height R (time) and circumference
L (space) may be seen in the other way around:

L(space) $ R(time) p $ E ABA(direct) ! ˜ABA(mirror)

i.e. analytic continuation which entails the same partition function

Zdirect(L,R) = Z̃mirror (L,R).

I Advantage: asymptotic BA exact in the mirror theory at R = 1, then
thermodynamics for minimal free energy at ’temperature’ T = 1/L

exp[�RE0(L)] = exp[�RLf̃min(L)], R ! 1

furnishes the ground state energy of direct (string/gauge) theory E0(L).
I Infinite system of non-linear (real) integral equations and E(L) is a

non-linear functional on the real rapidity u summed up on infinite
pseudoenergies ✏Q(u) (massive nodes).

Davide Fioravanti Sezione INFN di Bologna

Ambivalence of the Correspondence.



Mirror (tilde) 

Direct: Tr(Z^L) or Tr(….)+….

L

R long
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Overview with two research lines 1: Scaling functions via LIEs 2: Short operators via the Thermodynamic Bethe Ansatz An exercise and some details. Summary and Perspectives

Vacuum/Excited states Thermodynamic Bethe Ansatz

I Vacuum equations of the form

✏a(u) = µa + ẽa(u)�
X

b

Z
dv Ka,b(u, v) ln(1 + e�✏b(v))

with mirror energy ẽa(u) as driving term and scattering factors

Ka,b(u, v) / @v ln Sa,b(u, v)

I Excited states E(L) are connected to the vacuum by analytic
continuation in some parameter (e.g. µa and L) ) additional
inhomogeneous terms in the equations

P
i ln Sa,b(u, ui) depending on

TBA complex singularities ui :

e�✏a(ui ) = �1

these are the exact Bethe roots (with wrapping).
I ) Delicate and massive numerical work for analytic continuation.

Davide Fioravanti Sezione INFN di Bologna

Ambivalence of the Correspondence.



Overview with two research lines 1: Scaling functions via LIEs 2: Short operators via the Thermodynamic Bethe Ansatz An exercise and some details. Summary and Perspectives

Excited states via the Y-system

I Alternative route: for simpler integrable theories (like quantum
Sine-Gordon) we proposed and checked all the states - including the
ground state! - must satisfy the same functional equations, the so-called
Y -system:

Ya(u) ⌘ e�✏a(u).

In a nutshell, we loose the information concerning the inhomogeneous
terms as they are zero-modes of the ’TBA-operator’ (a multi-shift
operator with incidence matrix), i.e. ln Sa,b(u, ui) (sort of solution of
Y -system). Universal, but we recover the specific forcing term/state by
behaviour at u = ±1. Besides, these terms form the Aymptotic Bethe
Ansatz, once the non-linear integrals are forgotten. No true systematics.

I Novelty:additional discontinuity equations on the cuts of the rapidity
u-planes. We ’derived’ the dressing factor from these relations (limitation
of this ’explanation’).

Davide Fioravanti Sezione INFN di Bologna

Ambivalence of the Correspondence.



The Y-system
It is the Y-system(not the TBA) which is 
encoded in a Dynkin-like diagram.  

I seat on a node: LHS= 

RHS=Nearest neighbours products: 

Horizontal: 

Vertical: 

Author's personal copy
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Fig. 1. The Y-system diagram corresponding to the AdS5/CFT4 TBA equations.

As a result of the TBA procedure, the exact finite-size energy can be written in terms of the
pseudoenergies εa: the solutions of a system of non-linear integral equations. Even for relatively
simple relativistic systems, such as the sine-Gordon model, an exact and exhaustive study of the
TBA equations for excited states is an unfinished business.

An alternative but equivalent approach to excited states was adopted in [22,23]. Under the
perspective of a different non-linear integral equation, this idea was applied to some sectors
of the asymptotic Beisert–Staudacher equations in [24–26] and to the wrapping effects in the
Hubbard model [27]. The latter system is deeply related to the model studied in this paper.

Starting from the mirror version of Beisert–Staudacher equations due to Arutyunov and Frolov
[28] (see also [29]), the ground state TBA equations were recently and independently proposed
in [30–32]. The associated set of functional relations for the functions Ya = eεa , the Y-system
[33–37], was derived confirming an earlier proposal by Gromov, Kazakov and Vieira coming
from symmetry arguments [38].

The AdS5/CFT4 Y-system conjectured in [38], derived in [30–32] and associated to the ‘T-
hook’ diagram represented in Fig. 1 is:

YQ

(
u − i

g

)
YQ

(
u + i

g

)
=

∏

Q′

(
1 + YQ′(u)

)AQQ′ ∏

α

(
1 + 1

Y
(α)
(v|Q−1)(u)

)δQ,1−1

(
1 + 1

Y
(α)
(y|−)(u)

)δQ,1
, (1.1)
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As a result of the TBA procedure, the exact finite-size energy can be written in terms of the
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YQ

(
u − i

g

)
YQ

(
u + i

g

)
=

∏

Q′

(
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α
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Y
(α)
(v|Q−1)(u)

)δQ,1−1
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wrapping effect [11, 18] is particularly relevant in the semiclassical string theory which covers
the strong coupling regime though, for special reasons, it may not effect particular families of
operators.

A first important step leading to the partial solution of this problem was made by Bajnok
and Janik in [14]. Adapting the formulas for the finite-size Lüscher corrections [12, 13] to
the AdS5/CFT4 context, they were able to predict the four loop contribution to the Konishi
operator. The result was readily confirmed by the complicated diagrammatic calculations
of [15]. The method proposed by Bajnok and Janik can be extended to higher orders in
g2 [16, 17] but -as in most of the known perturbative schemes- the technical complication
increases very sharply with the loop order and precise non perturbative predictions are usually
out of reach.

In 1+1-dimensional massive relativistic scattering theories there is one well known way
to treat finite-size effects non perturbatively and exactly: the Thermodynamic Bethe Ansatz
(TBA) method. For this purpose, the TBA was first proposed for the ground state energy by
Al. B. Zamolodchikov in [19] and adapted to excited states in [20,21].

As a result of the TBA procedure, the exact finite-size energy can be written in terms of
the pseudoenergies εa: the solutions of a system of non-linear integral equations. Even for
relatively simple relativistic systems, such as the sine-Gordon model, an exact and exhaustive
study of the TBA equations for excited states is an unfinished business.

An alternative but equivalent approach to excited states was adopted in [22,23]. Under the
perspective of a different non-linear integral equation, this idea was applied to some sectors
of the asymptotic Beisert-Staudacher equations in [24–26] and to the wrapping effects in the
Hubbard model [27]. The latter system is deeply related to the model studied in this paper.

Starting from the mirror version of Beisert-Staudacher equations due to Arutyunov and
Frolov [28] (see also [29]), the ground state TBA equations were recently and independently
proposed in [30–32]. The associated set of functional relations for the functions Ya = eεa , the
Y-system [33–37], was derived confirming an earlier proposal by Gromov, Kazakov and Vieira
coming from symmetry arguments [38].

The AdS5/CFT4 Y-system conjectured in [38], derived in [30–32] and associated to the
‘T-hook’ diagram represented in Figure 1 is:

YQ(u− i
g )YQ(u+ i

g ) =
∏

Q′

(
1 + YQ′(u)

)AQQ′
∏

α

(
1 + 1

Y (α)
(v|Q−1)

(u)

)δQ,1−1

(
1 + 1

Y
(α)
(y|−)(u)

)δQ,1
, (1.1)

Y (α)
(y|−)(u+ i

g )Y
(α)
(y|−)(u− i

g ) =

(
1 + Y (α)

(v|1)(u)
)

(
1 + Y (α)

(w|1)(u)
) 1(

1 + 1
Y1(u)

) , (1.2)

Y (α)
(w|M)(u+ i

g )Y
(α)
(w|M)(u− i

g ) =
∏

N

(
1 + Y (α)

(w|N)(u)
)AMN

⎡

⎢⎢⎣

(
1 + 1

Y (α)
(y|−)

(u)

)

(
1 + 1

Y (α)
(y|+)(u)

)

⎤

⎥⎥⎦

δM,1

, (1.3)
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Figure 1: The Y-system diagram corresponding to the AdS5/CFT4 TBA equations.

In the integrable model framework the Y-systems play a very central rôle. Firstly, a Y-
system exhibits a very high degree of universality. Not only the whole set of excited states
of a given theory is associated to a single Y-system but also many different models may have
identical Y-systems. Two excited states of the same theory or two states of different models
sharing a common Y-system differ in the analytic properties of the Y functions inside a funda-
mental strip of the complex rapidity plane. Given this analytic information the Y-system can
be easily transformed to the integral TBA form. Roughly speaking, two different models have
different leading asymptotic behaviors, while different states of the same model differ in the
number and positions of the 1 + Ya zeros in the fundamental strip. In relativistic models the
Y functions are in general meromorphic in the rapidity u with zeros and poles both linked to
1 + Ya zeros through the Y-system.

For the ground state energy numerics is reliable and the accuracy is in general very high.
However, for excited states the situation is complicated by the presence of the finite number
of auxiliary equations constraining the positions of this special subset of zeros. Unfortunately,
both the number of special zeros and their positions in the complex rapidity plane can change
drastically as the coupling constant or the system size interpolate between the infrared and the
ultraviolet regimes. Therefore, the situation at moderate L may be substantially different from
the infrared distribution described by the asymptotic Bethe-Yang equations [20,21,39].
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) , (1.2)

Y
(α)
(w|M)

(
u + i

g

)
Y

(α)
(w|M)

(
u − i

g

)
=

∏

N

(
1 + Y

(α)
(w|N)(u)

)AMN

[(
1 + 1

Y
(α)
(y|−)(u)

)

(
1 + 1

Y
(α)
(y|+)(u)

)

]δM,1

, (1.3)

Y
(α)
(v|M)

(
u + i

g

)
Y

(α)
(v|M)

(
u − i

g

)
=

∏
N

(
1 + Y

(α)
(v|N)(u)

)AMN

(
1 + 1

YM+1(u)

)

[(
1 + Y

(α)
(y|−)(u)

)

(
1 + Y

(α)
(y|+)(u)

)

]δM,1

, (1.4)

where A1,M = δ2,M , ANM = δM,N+1 + δM,N−1 and AMN = ANM .
In the integrable model framework the Y-systems play a very central rôle. Firstly, a Y-system

exhibits a very high degree of universality. Not only the whole set of excited states of a given
theory is associated to a single Y-system but also many different models may have identical
Y-systems. Two excited states of the same theory or two states of different models sharing a
common Y-system differ in the analytic properties of the Y functions inside a fundamental strip
of the complex rapidity plane. Given this analytic information the Y-system can be easily trans-
formed to the integral TBA form. Roughly speaking, two different models have different leading
asymptotic behaviors, while different states of the same model differ in the number and positions
of the 1 + Ya zeros in the fundamental strip. In relativistic models the Y functions are in gen-
eral meromorphic in the rapidity u with zeros and poles both linked to 1 + Ya zeros through the
Y-system.

For the ground state energy numerics is reliable and the accuracy is in general very high.
However, for excited states the situation is complicated by the presence of the finite number
of auxiliary equations constraining the positions of this special subset of zeros. Unfortunately,
both the number of special zeros and their positions in the complex rapidity plane can change
drastically as the coupling constant or the system size interpolate between the infrared and the
ultraviolet regimes. Therefore, the situation at moderate L may be substantially different from
the infrared distribution described by the asymptotic Bethe–Yang equations [20,21,39].

The situation for the AdS5/CFT4-related model is further complicated by the presence of
square root branch discontinuities inside and at the border of the fundamental strip | Im(u)| �
1/g. According to the known Y → TBA transformation procedures this extra information should
be independently supplied. However, it was pointed out in [32] (see also [40]) that such disconti-
nuity information is stored into functions which depend non-locally on the TBA pseudoenergies.
In other words, they crucially depend on the particular excited state under consideration.

The main objective of this paper is to show that this problem can be overcome and in particular
that the discontinuity information is encoded in the Y-system together with the following set of
local and state-independent functional relations. Setting

#(u) =
[
lnY1(u)

]
+1, (1.5)

then # is the function introduced in [32] and the local discontinuity relations are:

[#]± 2N = ∓
∑

α=1,2

([
ln

(
1 + 1

Y
(α)
(y|∓)

)]

± 2N

+
N∑

M=1

[
ln

(
1 + 1

Y
(α)
(v|M)

)]

± (2N−M)

+ ln

(
Y

(α)
(y|−)

Y
(α)
(y|+)

))

, (1.6)

Author's personal copy

A. Cavaglià et al. / Nuclear Physics B 843 [FS] (2011) 302–343 305

Y
(α)
(y|−)

(
u + i

g

)
Y

(α)
(y|−)

(
u − i

g

)
=

(
1 + Y

(α)
(v|1)(u)

)

(
1 + Y

(α)
(w|1)(u)

)
1

(
1 + 1

Y1(u)

) , (1.2)

Y
(α)
(w|M)

(
u + i

g

)
Y

(α)
(w|M)

(
u − i

g

)
=

∏

N

(
1 + Y

(α)
(w|N)(u)

)AMN

[(
1 + 1

Y
(α)
(y|−)(u)

)

(
1 + 1

Y
(α)
(y|+)(u)

)

]δM,1

, (1.3)

Y
(α)
(v|M)

(
u + i

g

)
Y

(α)
(v|M)

(
u − i

g

)
=

∏
N

(
1 + Y

(α)
(v|N)(u)

)AMN

(
1 + 1

YM+1(u)

)

[(
1 + Y

(α)
(y|−)(u)

)

(
1 + Y

(α)
(y|+)(u)

)

]δM,1

, (1.4)

where A1,M = δ2,M , ANM = δM,N+1 + δM,N−1 and AMN = ANM .
In the integrable model framework the Y-systems play a very central rôle. Firstly, a Y-system

exhibits a very high degree of universality. Not only the whole set of excited states of a given
theory is associated to a single Y-system but also many different models may have identical
Y-systems. Two excited states of the same theory or two states of different models sharing a
common Y-system differ in the analytic properties of the Y functions inside a fundamental strip
of the complex rapidity plane. Given this analytic information the Y-system can be easily trans-
formed to the integral TBA form. Roughly speaking, two different models have different leading
asymptotic behaviors, while different states of the same model differ in the number and positions
of the 1 + Ya zeros in the fundamental strip. In relativistic models the Y functions are in gen-
eral meromorphic in the rapidity u with zeros and poles both linked to 1 + Ya zeros through the
Y-system.

For the ground state energy numerics is reliable and the accuracy is in general very high.
However, for excited states the situation is complicated by the presence of the finite number
of auxiliary equations constraining the positions of this special subset of zeros. Unfortunately,
both the number of special zeros and their positions in the complex rapidity plane can change
drastically as the coupling constant or the system size interpolate between the infrared and the
ultraviolet regimes. Therefore, the situation at moderate L may be substantially different from
the infrared distribution described by the asymptotic Bethe–Yang equations [20,21,39].

The situation for the AdS5/CFT4-related model is further complicated by the presence of
square root branch discontinuities inside and at the border of the fundamental strip | Im(u)| �
1/g. According to the known Y → TBA transformation procedures this extra information should
be independently supplied. However, it was pointed out in [32] (see also [40]) that such disconti-
nuity information is stored into functions which depend non-locally on the TBA pseudoenergies.
In other words, they crucially depend on the particular excited state under consideration.

The main objective of this paper is to show that this problem can be overcome and in particular
that the discontinuity information is encoded in the Y-system together with the following set of
local and state-independent functional relations. Setting

#(u) =
[
lnY1(u)

]
+1, (1.5)

then # is the function introduced in [32] and the local discontinuity relations are:

[#]± 2N = ∓
∑

α=1,2

([
ln

(
1 + 1

Y
(α)
(y|∓)

)]

± 2N

+
N∑

M=1

[
ln

(
1 + 1

Y
(α)
(v|M)

)]

± (2N−M)

+ ln

(
Y

(α)
(y|−)

Y
(α)
(y|+)

))

, (1.6)

Author's personal copy

A. Cavaglià et al. / Nuclear Physics B 843 [FS] (2011) 302–343 305

Y
(α)
(y|−)

(
u + i

g

)
Y

(α)
(y|−)

(
u − i

g

)
=

(
1 + Y

(α)
(v|1)(u)

)

(
1 + Y

(α)
(w|1)(u)

)
1

(
1 + 1

Y1(u)

) , (1.2)

Y
(α)
(w|M)

(
u + i

g

)
Y

(α)
(w|M)

(
u − i

g

)
=

∏

N

(
1 + Y

(α)
(w|N)(u)

)AMN

[(
1 + 1

Y
(α)
(y|−)(u)

)

(
1 + 1

Y
(α)
(y|+)(u)

)

]δM,1

, (1.3)

Y
(α)
(v|M)

(
u + i

g

)
Y

(α)
(v|M)

(
u − i

g

)
=

∏
N

(
1 + Y

(α)
(v|N)(u)

)AMN

(
1 + 1

YM+1(u)

)

[(
1 + Y

(α)
(y|−)(u)

)

(
1 + Y

(α)
(y|+)(u)

)

]δM,1

, (1.4)

where A1,M = δ2,M , ANM = δM,N+1 + δM,N−1 and AMN = ANM .
In the integrable model framework the Y-systems play a very central rôle. Firstly, a Y-system

exhibits a very high degree of universality. Not only the whole set of excited states of a given
theory is associated to a single Y-system but also many different models may have identical
Y-systems. Two excited states of the same theory or two states of different models sharing a
common Y-system differ in the analytic properties of the Y functions inside a fundamental strip
of the complex rapidity plane. Given this analytic information the Y-system can be easily trans-
formed to the integral TBA form. Roughly speaking, two different models have different leading
asymptotic behaviors, while different states of the same model differ in the number and positions
of the 1 + Ya zeros in the fundamental strip. In relativistic models the Y functions are in gen-
eral meromorphic in the rapidity u with zeros and poles both linked to 1 + Ya zeros through the
Y-system.

For the ground state energy numerics is reliable and the accuracy is in general very high.
However, for excited states the situation is complicated by the presence of the finite number
of auxiliary equations constraining the positions of this special subset of zeros. Unfortunately,
both the number of special zeros and their positions in the complex rapidity plane can change
drastically as the coupling constant or the system size interpolate between the infrared and the
ultraviolet regimes. Therefore, the situation at moderate L may be substantially different from
the infrared distribution described by the asymptotic Bethe–Yang equations [20,21,39].

The situation for the AdS5/CFT4-related model is further complicated by the presence of
square root branch discontinuities inside and at the border of the fundamental strip | Im(u)| �
1/g. According to the known Y → TBA transformation procedures this extra information should
be independently supplied. However, it was pointed out in [32] (see also [40]) that such disconti-
nuity information is stored into functions which depend non-locally on the TBA pseudoenergies.
In other words, they crucially depend on the particular excited state under consideration.

The main objective of this paper is to show that this problem can be overcome and in particular
that the discontinuity information is encoded in the Y-system together with the following set of
local and state-independent functional relations. Setting

#(u) =
[
lnY1(u)

]
+1, (1.5)

then # is the function introduced in [32] and the local discontinuity relations are:

[#]± 2N = ∓
∑

α=1,2

([
ln

(
1 + 1

Y
(α)
(y|∓)

)]

± 2N

+
N∑

M=1

[
ln

(
1 + 1

Y
(α)
(v|M)

)]

± (2N−M)

+ ln

(
Y

(α)
(y|−)

Y
(α)
(y|+)

))

, (1.6)

Author's personal copy

A. Cavaglià et al. / Nuclear Physics B 843 [FS] (2011) 302–343 305

Y
(α)
(y|−)

(
u + i

g

)
Y

(α)
(y|−)

(
u − i

g

)
=

(
1 + Y

(α)
(v|1)(u)

)

(
1 + Y

(α)
(w|1)(u)

)
1

(
1 + 1

Y1(u)

) , (1.2)

Y
(α)
(w|M)

(
u + i

g

)
Y

(α)
(w|M)

(
u − i

g

)
=

∏

N

(
1 + Y

(α)
(w|N)(u)

)AMN

[(
1 + 1

Y
(α)
(y|−)(u)

)

(
1 + 1

Y
(α)
(y|+)(u)

)

]δM,1

, (1.3)

Y
(α)
(v|M)

(
u + i

g

)
Y

(α)
(v|M)

(
u − i

g

)
=

∏
N

(
1 + Y

(α)
(v|N)(u)

)AMN

(
1 + 1

YM+1(u)

)

[(
1 + Y

(α)
(y|−)(u)

)

(
1 + Y

(α)
(y|+)(u)

)

]δM,1

, (1.4)

where A1,M = δ2,M , ANM = δM,N+1 + δM,N−1 and AMN = ANM .
In the integrable model framework the Y-systems play a very central rôle. Firstly, a Y-system

exhibits a very high degree of universality. Not only the whole set of excited states of a given
theory is associated to a single Y-system but also many different models may have identical
Y-systems. Two excited states of the same theory or two states of different models sharing a
common Y-system differ in the analytic properties of the Y functions inside a fundamental strip
of the complex rapidity plane. Given this analytic information the Y-system can be easily trans-
formed to the integral TBA form. Roughly speaking, two different models have different leading
asymptotic behaviors, while different states of the same model differ in the number and positions
of the 1 + Ya zeros in the fundamental strip. In relativistic models the Y functions are in gen-
eral meromorphic in the rapidity u with zeros and poles both linked to 1 + Ya zeros through the
Y-system.

For the ground state energy numerics is reliable and the accuracy is in general very high.
However, for excited states the situation is complicated by the presence of the finite number
of auxiliary equations constraining the positions of this special subset of zeros. Unfortunately,
both the number of special zeros and their positions in the complex rapidity plane can change
drastically as the coupling constant or the system size interpolate between the infrared and the
ultraviolet regimes. Therefore, the situation at moderate L may be substantially different from
the infrared distribution described by the asymptotic Bethe–Yang equations [20,21,39].

The situation for the AdS5/CFT4-related model is further complicated by the presence of
square root branch discontinuities inside and at the border of the fundamental strip | Im(u)| �
1/g. According to the known Y → TBA transformation procedures this extra information should
be independently supplied. However, it was pointed out in [32] (see also [40]) that such disconti-
nuity information is stored into functions which depend non-locally on the TBA pseudoenergies.
In other words, they crucially depend on the particular excited state under consideration.

The main objective of this paper is to show that this problem can be overcome and in particular
that the discontinuity information is encoded in the Y-system together with the following set of
local and state-independent functional relations. Setting

#(u) =
[
lnY1(u)

]
+1, (1.5)

then # is the function introduced in [32] and the local discontinuity relations are:

[#]± 2N = ∓
∑

α=1,2

([
ln

(
1 + 1

Y
(α)
(y|∓)

)]

± 2N

+
N∑

M=1

[
ln

(
1 + 1

Y
(α)
(v|M)

)]

± (2N−M)

+ ln

(
Y

(α)
(y|−)

Y
(α)
(y|+)

))

, (1.6)

Author's personal copy

306 A. Cavaglià et al. / Nuclear Physics B 843 [FS] (2011) 302–343

[

ln

(
Y

(α)
(y|−)

Y
(α)
(y|+)

)]

± 2N

= −
N∑

Q= 1

[
ln

(
1 + 1

YQ

)]

± (2N−Q)

, (1.7)

with N = 1,2, . . . ,∞ and

[
lnY

(α)
(w|1)

]
± 1 = ln

(
1 + 1/Y

(α)
(y|−)

1 + 1/Y
(α)
(y|+)

)

,
[
lnY

(α)
(v|1)

]
± 1 = ln

(
1 + Y

(α)
(y|−)

1 + Y
(α)
(y|+)

)

, (1.8)

where the symbol [f ]Z with Z ∈ Z denotes the discontinuity of f (z)

[f ]Z = lim
ϵ→0+

f (u + iZ/g + iϵ) − f (u + iZ/g − iϵ), (1.9)

on the semi-infinite segments described by z = u+ iZ/g with u ∈ (−∞,−2)∪ (2,+∞) and the
function [f (u)]Z is the analytic extension of the discontinuity (1.9) to generic complex values
of u. To retrieve the TBA equations, the extended Y-system has to be supplemented with the
asymptotics

e#(u) ∼ uL for u → ∞, Im(u) < 0;
e#(u) ∼ 1/uL for u → ∞, Im(u) > 0, (1.10)

which capture all the dependence on the scale L.
In this paper, instead of describing how relations (1.6)–(1.8) can be deduced from the TBA

equations, we will show how the ground state TBA equations for both the mirror and the direct
AdS5/CFT4 theories can be derived from (1.6)–(1.8) and the Y-system using Cauchy’s integral
theorem. Many other interesting results will emerge along the way on the analytic properties of
the Y functions, on the dressing factor and on the quantisation of L.

The rest of this paper is organised as follows. Section 2 contains the TBA equations of [30–
32] written in a form more appropriate to the study of their analytic structure. A previously
unnoticed link between the quantisation of the total momentum, the dilogarithm trick [19] and
the trace condition is discussed in Section 3.

The AdS5/CFT4-related Y-system is described in Section 4; its validity as the rapidity pa-
rameter u is moved in the complex plane is briefly discussed together with some preliminary
comments on the analytic structure of the Y functions. The functional relations versus TBA
transformation method for a particular equation involving the fermionic y-particles is described
in detail in Section 5. The derivation of the discontinuity function # from the local Y-system and
the relevant discontinuity relations is given in Section 6. The TBA equations for the w-, v- and
Q-particles are derived in Sections 7, 8 and 9, respectively.

As a preliminary application of the method, we have derived the TBA for the direct theory:
this result is described in Section 10. Finally Section 11 contains our conclusions. There are
also seven appendices. The S-matrix elements involved in the definition of the TBA kernels are
given in Appendix A. Appendix B presents some previously known identities with an emphasis
on aspects of analytic continuation. Appendices C to F contain the most technical parts of the
calculations. In particular, in Appendices C and D we prove the equivalence between the two
different explicit expressions for the mirror dressing factor Σ and σ̂ given in [48] and [31],
respectively. Different conventions have been adopted in [30–32] for the string coupling, the
labeling and the definition of the Y functions and the TBA kernels: the purpose of Appendix G
is to provide the reader with a concise dictionary.
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Fig. 5. The deformed contour ΓO .

[f ]Z = lim
ϵ→0 +

f (u + iZ/g + iϵ) − f (u + iZ/g − iϵ). (5.5)

Thus, the function
[
f (u)

]
Z

= f (u + iZ/g) − f (u∗ + iZ/g) (5.6)

is the analytic extension of the discontinuity (5.5) to generic complex values of u.
We conjecture that the relevance of Eq. (5.4) and the other discontinuity relations introduced

in the following sections is not restricted to the ground state but, provided the analytic properties
on the relevant reference sheets are suitably modified, they can be directly transformed into
excited state TBA equations.

First notice that the quantity appearing on the lhs of (5.3) is analytic at the points u = ± 2, but
it still has an infinite set of branch points at u = ± 2 ± i2N/g with N ∈ N. In the following we
shall assume that, for the ground state TBA equations, these are the only singularities of (5.3) on
the first Riemann sheet. By applying Cauchy’s integral theorem we can first write

ln(Y
(α)
(y|−)(u)/Y

(α)
(y|+)(u))

√
4 − u2

=
∮

γ

dz

2π i

ln(Y
(α)
(y|−)(z)/Y

(α)
(y|+)(z))

(z − u)
√

4 − z2
, (5.7)

where γ is a positive oriented contour running inside the strip |Im(u)| < 1/g, and then de-
form γ into the homotopically equivalent contour ΓO represented in Fig. 5 as the union
of an infinite number of rectangular contours lying between the branch cuts of (5.3). Since
ln(Y

(α)
(y|−)/Y

(α)
(y|+)) → O(1) uniformly as |u| → ∞ the sum of the vertical segment contributions

vanishes as the horizontal size of the rectangles tends to infinity. Using relation (5.4) we can
write the rhs of (5.7) as

−
∑
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( ∫
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−
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R−i2τJ/g−iϵ

)
dz
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LQ(z + iτQ/g)√
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(5.8)

(τ = ± 1, J = 1,2, . . .). However, as a consequence of the identity
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⇒



ODE/IM Correspondence: a quick 
review (Dorey,Tateo,BLZ,Dunning,Suzuki,Frenkel,Bender…..)

Simplest example: Schroedinger eq. on the half line   (Stokes line) 

  

we fix the subdominant solution such that at complex infinity 

  

Changing anti-Stokes sector  =  this solution becomes dominant

[ ] ( )P. Dorey, R. TateorNuclear Physics B 563 PM 1999 573–602 575

Ž . 2Mup the problem on the half-line 0,` with the potential x , so long as the boundary
condition at xs 0 is chosen correctly. The even wavefunctions are picked out by the

X Ž . Ž .Neumann condition c 0 s 0, and the odd by the Dirichlet condition c 0 s 0.2 k 2 kq1
These two spectral problems thus yield the even and odd spectral subdeterminants for
the whole-line problem directly.
The problem of finding spectral determinants related to the Q-operators at general

w x Ž .values of p was addressed in 10 , where it was found that the problem 1.1 should be
modified to

d2 l lq1Ž .
2My qx q c x s Ec x 1.6Ž . Ž . Ž .2 2ž /dx x

Ž .on the half-line 0,` . Imposing the two possible power-like behaviours at xs 0,
Ž . lq1 Ž . ylnamely c x Ax and c x Ax , results in two different spectral problems, and

Ž Ž . 2 .their spectral determinants are proportional to the functions A l, 2 lq1 b r4 andq
Ž Ž . 2 .A l, 2 lq1 b r4 respectively.y
Much of this work rested on the so-called quantum Wronskian relation satisfied by

w x w xthe operators Q and Q 8 . But a key feature of 7,8 was another functional equation,q y
Ž .relating the Q-operators to further operators T l , sometimes called quantum transfer

matrices. Called the T-Q relation, it is

T l Q l s Q qy1l qQ ql , 1.7Ž . Ž . Ž . Ž .Ž ." " "

where

qs eipb 2 . 1.8Ž .
< : Ž . Ž . ² < Ž . < :The vacua p are also eigenstates of the T l , and if we set T l, p s pT l p

then the T-Q relation for these vacuum eigenvalues can be written as

T l, p A l, p s e. 2p i pA qy1l, p qe" 2p i pA ql, p , 1.9Ž . Ž . Ž . Ž .Ž ." " "

w xan equation that was also obtained in 11 .
In this paper we point out that this relation also has a natural interpretation in the

context of the Schrodinger equation, thus finding a role for the T operators at general b¨ ˆ
and p in the ‘Schrodinger picture’. This leads to an alternative derivation of the results¨

w xof 1,10 , and a novel interpretation of the fusion relations and their truncations. It also
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Consider the differential equation

d2
y qP x c x s 0 2.1Ž . Ž . Ž .2ž /dx

Ž . 2M Žfor general complex values of x. For our purposes we must set P x s x yEq l lq
. y2 w x Ž .1 x . In 12,13 P x was taken to be a polynomial in x, restricting 2M to be a

Ž .positive integer, and l lq1 to be zero. Allowing 2M to be a general real number
Ž .larger thany2, or l lq1 to be non-zero, should not change the result quoted below in

Ž .any essential way, though it will usually introduce a branch point in c x at xs 0.
w xModulo this proviso, we have 12,13 :

Ž . Ž .Eq. 2.1 has a solution ys y x,E,l such that

Ž . Ž1. y is an entire function of x,E though, for the reason just mentioned, x must in
.general be considered to live on a suitable cover of the punctured complex plane .

2. y and yXs dyrdx admit the asymptotic representations
1

yMr2 Mq1y;x exp y x , 2.2Ž .ž /Mq1
1

X Mr2 Mq1y ;yx exp y x 2.3Ž .ž /Mq1
as x tends to infinity in any closed sector contained in the sector

3p
< <arg x - . 2.4Ž .

2Mq2

ŽFurthermore, the solution y is uniquely characterised by this information. Note though
Ž .that the asymptotic 2.2 is only valid as given if M)1. Extra terms appear for M(1,

consistent with the WKB result that the solution which decays as x q` is asymptoti-
Ž .y1r4 Ž x Ž .1r2 . .cally proportional to P x exp yH P t dt .

Let SS denote the sectork

2kp p
arg xy - . 2.5Ž .

2Mq2 2Mq2
Ž .From 2.2 it follows that y tends to zero as x tends to infinity in SS , and to infinity as0

x tends to infinity in SS and SS . More technically, one says that y is subdominant iny1 1
SS , and dominant in SS . To find solutions subdominant in other sectors, consider0 "1
Ž . Ž .y x s y ax,E,l for any constant a. This function solves the equationˆ

d2 l lq1Ž .
2Mq2 2M 2y qa x ya Eq y x s 0 . 2.6Ž . Ž .ˆ2 2ž /dx x

2Mq2 Ž y2 . Ž .Thus if a s 1, y ax,a E,l is another solution to the original problem 2.1 .
Ž Ž ..Setting vs exp p ir Mq1 we therefore have a set of solutions

y 'y x ,E,l s v kr2 y vyk x ,v 2 kE,l , 2.7Ž . Ž . Ž .k k

Žwith y subdominant in SS and dominant in SS . Our convention differs fromk k k"1
w x kr2 .12,13 by the factor of v , which is included for later convenience.
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Discrete Symmetry Breaking

Omega symmetry of the eq. not of the solution which rotates by 
  , quantum group 

   

  

around infinity, irregular singularity. 

Lambda symmetry, around zero, regular singularity: 
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= q

as x → +∞, and let

D±(E, l) =
∞
∏

n=1

(

1 −
E

E±
n

)

. (18)

Simple WKB analysis of the equation (12) shows that

E±
n ∼ n

2α
1+α as n → ∞ (19)

and therefore for α > 1 these products converge, and (18) defines entire functions of E. It

is easy to see that in the special case l = 0 the sets
{

E+
n

}∞

n=1
and

{

E−
n

}∞

n=1
become the

components of the spectrum of (1) associated with odd and even sectors, respectively, and

so for l = 0 the functions (18) reduce to (9). In what follows we will show that for α > 1

and all values of p

A±(λ, p) = D±(ρλ2, 2p/β2 − 1/2) . (20)

We start with an observation that the following transformations of the variables

(x, E, l),

Λ̂ : x → x , E → E , l → −1 − l , (21)

Ω̂ : x → qx , E → q−2E , l → l (22)

with q = e
iπ

1+α , leave the equation (12) unchanged while acting nontrivially on its solutions.

As usual, the equation (12) admits a unique solution which decays at large x; we denote

this solution as χ(x, E, l) and fix its normalization by the condition

χ(x, E, l) : χ(x, E, l) → x−α
2 exp

{

−
x1+α

1 + α
+ O(x1−α)

}

as x → +∞ . (23)

The transformation Ω̂ applied to χ(x, E, l) yields another solution, and the pair of functions

χ+(x, E) = χ(x, E, l) , χ−(x, E) = i q−
1
2 χ(qx, q−2E, l) (24)

form a basis in the space of solutions of (12). It is not difficult to check that

W
[

χ+,χ−
]

= 2 , (25)

i.e. the solutions (24) are indeed linearly independent. The solutions (15) can always be

expanded in this basis, in particular

ψ+ = C(E, l)χ+ + D(E, l)χ− , (26)

4
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2 exp

{

−
x1+α

1 + α
+ O(x1−α)

}

as x → +∞ . (23)
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χ+(x, E) = χ(x, E, l) , χ−(x, E) = i q−
1
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W
[

χ+,χ−
]

= 2 , (25)

i.e. the solutions (24) are indeed linearly independent. The solutions (15) can always be
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4

with some nonsingular coefficients C(E, l) and D(E, l). The transformations (21) and (22)
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1
2 χ− , Ω̂χ− = −i q

1
2 χ+ + uχ− (28)
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1

2
W

[

χ+,ψ+
]

. (31)
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2 , (33)
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5

[ ] ( )P. Dorey, R. TateorNuclear Physics B 563 PM 1999 573–602578

Ž . Ž .these are zero at xs 0 if l lq1 -0, whilst one or other is infinite if l lq1 )0.
Ž .However, rather than considering the functions y x,E,l at xs 0 directly, we can take a

w x q y qhint from the result of 10 and project onto either c or c . We choose to fix c by
the x 0 asymptotic

cq x ,E,l ;x lq1qO x lq3 . 2.14Ž . Ž . Ž .
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Ž w x w x. qŽ .equation see, for example, Ch. 2 of Ref. 14 or Ch. 4 of Ref. 15 c x,E,l for
Re l)y1r2 is sometimes called the regular solution.

Ž . "In analogy to 2.7 , we define ‘shifted’ solutions c :k

c "'c " x ,E,l s v kr2c " vyk x ,v 2 kE,l . 2.16Ž . Ž . Ž .k k
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w " xŽ . w "xŽ 2 .We also have W y ,c E,l s W y ,c v E,l , sok q1 k q1 k k1 2 1 2

" " kŽ lq1r2. "W y ,c E,l s v W y ,c E,lŽ . Ž .k k k

" kŽ lq1r2. " 2 ks v W y ,c v E,l . 2.18Ž . Ž .
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. "D E,l 'W y x ,E,l ,c x ,E,l 2.19Ž . Ž . Ž . Ž .
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yŽ . Ž .we need only consider D E,l . In addition to 2.20 , we have

Ž . yi : C and D are entire functions of E;
Ž . yii : If l is real and larger thany1r2, then the zeroes of D all lie on the positive
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! 4A consequence of these facts is that each pair y , y provides a set of linearlyk kq1
Ž .independent solutions to the second-order equation 2.1 , and any other solution can be

expanded in terms of them. In particular,
˜y x ,E,l sC E,l y x ,E,l qC E,l y x ,E,l . 2.8Ž . Ž . Ž . Ž . Ž . Ž .ky1 k k k kq1

˜The functions C and C are called the Stokes multipliers for y with respect to yk k ky1 k
2 ˜ ˜ 2Ž . Ž . Ž . Ž . Ž .and y . It follows from 2.7 that C E,l sC v E,l and C E,l sC v E,l .kq1 k ky1 k ky1

˜ ˜ ŽFor brevity we will write C and C as C and C respectively. Again, we differ slightly0 0
˜w xfrom the conventions of 12,13 , where the abbreviations C and C were instead reserved

˜ .for C and C .1 1
The Stokes multipliers can be expressed in terms of Wronskians. Recall that the

w x Ž . Ž .Wronskian W f , g of two functions f x and g x is defined as
w x X XW f , g s fg y f g . 2.9Ž .

Ž . w xIf f and g both solve a Schrodinger equation such as 2.1 , then W f , g is independent¨
of x; furthermore, it vanishes if and only if f and g are linearly dependent. Taking the

Ž .Wronskian of 2.8 at ks0 with y and y shows that1 0

W Wy1 ,1 y1,0˜Cs , Csy , 2.10Ž .
W W0,1 0,1

w xwhere we used the abbreviation W for W y , y . These Wronskians are entirek ,k k k1 2 1 2
functions of E and l. Since y and y are independent, W never vanishes, and C and0 1 0,1
C̃ are also entire.

˜ w x Ž .In fact, all of the C are identically equal toy1 12,13 . This follows from 2.10 andk
Ž . Ž 2 . Ž . Žthe relations W E,l sW v E,l and W E,l s2 i. The second of thesek q1,k q1 k ,k 0,11 2 1 2

is found by evaluating W as x tends to infinity in the sectors SS or SS , where the0,1 0 1
Ž .asymptotic behaviours of y and y and their derivatives are determined by 2.2 and0 1

Ž . . Ž . Ž ) ) ) .) Ž . Ž .2.3 . Since y x,E,l sy x ,E ,l , it also follows from 2.10 that C E,l isy1 1
real whenever E and l are real.

Ž .The basic Stokes relation 2.8 at ks0 is therefore
C E,l y x ,E,l sy x ,E,l qy x ,E,l 2.11Ž . Ž . Ž . Ž . Ž .0 y1 1

with
1

C E,l s W E,l . 2.12Ž . Ž . Ž .y1 ,12 i
Ž .If 2.11 is rewritten in terms of y it becomes

C E,l y x ,E,l svy1r2 y v x ,vy2E,l qv 1r2 y vy1 x ,v 2E,l 2.13Ž . Ž . Ž . Ž . Ž .
Ž . Ž .With x formally set to zero, this has exactly the form of 1.9 for A l, p , albeit at theq

2 2p i p 1r2 Žspecific value b r4 of p for which e sv . It also matches the T-Q relation for
2 Ž . Ž . w xA at psyb r4, but since A l, p sA l,yp 8 this is not an independenty y q

. Ž .result. However, this tactic only works when l lq1 s0. Otherwise, the resulting
Ž .equation in E is either trivial or meaningless: if l lq1 -0, that is y1- l-0, then

Ž . Ž . Ž .y xs0,E,l is identically zero, while if l lq1 )0 then y xs0,E,l is almost
everywhere infinite.

Ž .The problem arises because any solution to 2.1 is a linear combination of one
solution, cq, behaving near xs0 as x lq1, and one, cy, behaving there as xyl. Both of
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are projections on the psi. Scattering theory  
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Ž . 2Mup the problem on the half-line 0,` with the potential x , so long as the boundary
condition at xs 0 is chosen correctly. The even wavefunctions are picked out by the

X Ž . Ž .Neumann condition c 0 s 0, and the odd by the Dirichlet condition c 0 s 0.2 k 2 kq1
These two spectral problems thus yield the even and odd spectral subdeterminants for
the whole-line problem directly.
The problem of finding spectral determinants related to the Q-operators at general

w x Ž .values of p was addressed in 10 , where it was found that the problem 1.1 should be
modified to

d2 l lq1Ž .
2My qx q c x s Ec x 1.6Ž . Ž . Ž .2 2ž /dx x

Ž .on the half-line 0,` . Imposing the two possible power-like behaviours at xs 0,
Ž . lq1 Ž . ylnamely c x Ax and c x Ax , results in two different spectral problems, and

Ž Ž . 2 .their spectral determinants are proportional to the functions A l, 2 lq1 b r4 andq
Ž Ž . 2 .A l, 2 lq1 b r4 respectively.y
Much of this work rested on the so-called quantum Wronskian relation satisfied by

w x w xthe operators Q and Q 8 . But a key feature of 7,8 was another functional equation,q y
Ž .relating the Q-operators to further operators T l , sometimes called quantum transfer

matrices. Called the T-Q relation, it is

T l Q l s Q qy1l qQ ql , 1.7Ž . Ž . Ž . Ž .Ž ." " "

where

qs eipb 2 . 1.8Ž .
< : Ž . Ž . ² < Ž . < :The vacua p are also eigenstates of the T l , and if we set T l, p s pT l p

then the T-Q relation for these vacuum eigenvalues can be written as

T l, p A l, p s e. 2p i pA qy1l, p qe" 2p i pA ql, p , 1.9Ž . Ž . Ž . Ž .Ž ." " "

w xan equation that was also obtained in 11 .
In this paper we point out that this relation also has a natural interpretation in the

context of the Schrodinger equation, thus finding a role for the T operators at general b¨ ˆ
and p in the ‘Schrodinger picture’. This leads to an alternative derivation of the results¨

w xof 1,10 , and a novel interpretation of the fusion relations and their truncations. It also
has the bonus, for integer values of M, of providing a simple proof of the T-system
conjecture alluded to above. All of this material is contained in Sections 2–6, while
Section 7 applies the results to a problem in quantum mechanics, and Section 8
discusses duality properties. Finally, Section 9 contains our conclusions, and an ap-
pendix details the calculation of a certain asymptotic used in Section 2.

2. The general T-Q relation

w xThe results of 12,13 provide a convenient framework for our discussion, and we
begin with a quick summary of some of this material.

l 6= 0
<latexit sha1_base64="wmiFDeJULHfPu15Qshg0yi0ghXQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2k3bpZhN3N0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzUFj2Jj8Ttlytu1Z2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzc+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCaz/jMkkNSrZYFKaCmJjMficDrpAZMbGEMsXtrYSNqKLM2IRKNgRv+eVV0qpVvYtq7f6yUr/J4yjCCZzCOXhwBXW4gwY0gcEYnuEV3pzEeXHenY9Fa8HJZ47hD5zPH6sGjyA=</latexit>
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Ž . Ž .these are zero at xs 0 if l lq1 -0, whilst one or other is infinite if l lq1 )0.
Ž .However, rather than considering the functions y x,E,l at xs 0 directly, we can take a

w x q y qhint from the result of 10 and project onto either c or c . We choose to fix c by
the x 0 asymptotic

cq x ,E,l ;x lq1qO x lq3 . 2.14Ž . Ž . Ž .
Since cy, the other solution, behaves as xyl , this only determines cq uniquely if
Re l)y3r2. If necessary, cq can be defined outside this domain by analytic

Ž . Ž .continuation. In particular, since l only appears in 2.1 in the combination l lq1 , we
can continue from l to y1y l and define cy as

cy x ,E,l 'cq x ,E,y1y l . 2.15Ž . Ž . Ž .
This procedure does bring some subtleties, to which we shall return Section 5 below, but
they do not affect the arguments of this section. In discussions of the radial Schrodinger¨

Ž w x w x. qŽ .equation see, for example, Ch. 2 of Ref. 14 or Ch. 4 of Ref. 15 c x,E,l for
Re l)y1r2 is sometimes called the regular solution.

Ž . "In analogy to 2.7 , we define ‘shifted’ solutions c :k

c "'c " x ,E,l s v kr2c " vyk x ,v 2 kE,l . 2.16Ž . Ž . Ž .k k

Ž .These also solve the original problem 2.1 . By considering the x 0 limit it is easily
seen that

c " x ,E,l s v . kŽ lq1r2.c " x ,E,l . 2.17Ž . Ž . Ž .k

w " xŽ . w "xŽ 2 .We also have W y ,c E,l s W y ,c v E,l , sok q1 k q1 k k1 2 1 2

" " kŽ lq1r2. "W y ,c E,l s v W y ,c E,lŽ . Ž .k k k

" kŽ lq1r2. " 2 ks v W y ,c v E,l . 2.18Ž . Ž .
Ž . "We can now take the Wronskian of both sides of 2.11 with c . Defining

. "D E,l 'W y x ,E,l ,c x ,E,l 2.19Ž . Ž . Ž . Ž .
Ž . Ž .and using Eq. 2.18 , the Stokes relation 2.11 becomes

C E,l D. E,l s v . Ž1r2ql .D. vy2E,l qv " Ž1r2ql .D. v 2E,l 2.20Ž . Ž . Ž . Ž . Ž .
Ž . Ž ip rŽMq1. ipb 2 .and 1.9 has indeed been matched, provided v is equal q that is, e s e ,

and v lq1r2 is equal to e2p i p. These are the same relations between M and b , and l
w xand p, as obtained in 1,10 , found here by an alternative route.

Ž .To establish the precise relation between the functions appearing in Eqs. 1.9 and
Ž .2.20 , we can use the fact that, when combined with certain analyticity properties, T-Q

w x qŽ . yŽ .relations of this kind are extremely restrictive 7,8,16 . Since D E,l s D E,y ly1 ,
yŽ . Ž .we need only consider D E,l . In addition to 2.20 , we have

Ž . yi : C and D are entire functions of E;
Ž . yii : If l is real and larger thany1r2, then the zeroes of D all lie on the positive
real axis of the complex-E plane;
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These two spectral problems thus yield the even and odd spectral subdeterminants for
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The problem of finding spectral determinants related to the Q-operators at general

w x Ž .values of p was addressed in 10 , where it was found that the problem 1.1 should be
modified to
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Much of this work rested on the so-called quantum Wronskian relation satisfied by
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where
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then the T-Q relation for these vacuum eigenvalues can be written as
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w xan equation that was also obtained in 11 .
In this paper we point out that this relation also has a natural interpretation in the

context of the Schrodinger equation, thus finding a role for the T operators at general b¨ ˆ
and p in the ‘Schrodinger picture’. This leads to an alternative derivation of the results¨

w xof 1,10 , and a novel interpretation of the fusion relations and their truncations. It also
has the bonus, for integer values of M, of providing a simple proof of the T-system
conjecture alluded to above. All of this material is contained in Sections 2–6, while
Section 7 applies the results to a problem in quantum mechanics, and Section 8
discusses duality properties. Finally, Section 9 contains our conclusions, and an ap-
pendix details the calculation of a certain asymptotic used in Section 2.

2. The general T-Q relation

w xThe results of 12,13 provide a convenient framework for our discussion, and we
begin with a quick summary of some of this material.



From the TQ relation or the QQ-system (more fundamental), n=0 (n=1 definition of T) of  

  

the whole integrability machinery develops functional equations; here we just need pay attention to their 
derivation/interpretation from the ODE 

Fused T relations 

   

which brings the TT-system or discrete Hirota eq. 

  

with the ODE identification with the Wronskian   
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Ž . Ž . Ž . Ž .tiable functions, so that given four arbitrary functions f x , g x , h x and l x , and
arbitrary constants a ,b ,g ,d , we have

w x w x w x w x w xW a fqbg ,g hqd l sagW f ,h qadW f ,l qbgW g ,h qbdW g ,l .
5.1Ž .

Ž . " y q4For almost all l exceptions will be discussed below , the functions c ,c introduced
Ž . Ž .in 2.14 and 2.15 provide an alternative basis for the space of solutions to the

Ž . w "x .differential equation 2.1 . In particular, using the results W y,c sD and
w y qxW c ,c s2 lq1, we have

2 lq1 y x ,E,l sDy E,l cy x ,E,l yDq E,l cq x ,E,l , 5.2Ž . Ž . Ž . Ž . Ž . Ž . Ž .
Ž . Ž .More generally, the shifted solutions defined by 2.7 and 2.16 satisfy

2 lq1 y x ,E,l sDy v 2 kE,l cy x ,E,l yDq v 2 kE,l cq x ,E,l .Ž . Ž . Ž . Ž . Ž . Ž .k k k

5.3Ž .
Ž .Taking the Wronskian 5.3 at ksy1 with the same equation at ksn, shifting E to

1yn Ž . Žn.Ž . Ž .v E and then using the formula 4.21 for C E , property 5.1 and the results
q q y yW c ,c sW c ,c s0,k p k p

y q Žkyp.Ž lq1r2.W c ,c s 2 lq1 v 5.4Ž . Ž .p k

Ž .valid at arbitrary ‘shifts’ p and k , we find

4 lq2 i C Žn. E sv Žnq1.Ž lq1r2.Dy v nq1E,l Dq vyny1E,lŽ . Ž . Ž . Ž .
yvyŽ nq1.Ž lq1r2.Dy vyny1E,l Dq v nq1E,l . 5.5Ž . Ž . Ž .

In the context of integrable quantum field theory, a corresponding set of relations was
w xgiven in 8 ,

2 isin 2p p T l sqŽ4 jq2. pr b 2
A q jq1r2l, p A qyjy1r2l, pŽ . Ž . Ž . Ž .j q y

yqyŽ4 jq2. pr b 2
A qyjy1r2l, p A q jq1r2l, p , 5.6Ž .Ž . Ž .q y

Ž . Ž .where js0, 1r2, 1 . . . With the identifications 2.27 and 2.28 , and using the result
Ž . 23.16 , the two sets of relations agree if, as before, qsv and 2 prb s lq1r2. At

Ž . w x Ž .js0, 5.6 is the ‘quantum Wronskian’ relation of 8 , while the ns0 case of 5.5 was
Ž . w xfirst found for M an integer and ls0 in 3 . The match between these two was a key
w xingredient in 1,10 .

w x w xThe ‘T-system conjecture’ of 1 , proved in 6 , is a simple corollary of this result. If
Ž .ls0 and M is an integer, then 5.5 at nsM becomes

C ŽM . E sDq yE Dy yE sD yE , 5.7Ž . Ž . Ž . Ž . Ž .M

the second equality following because at ls0, Dq and Dy are the even and odd
Ž . ŽM .Ž .spectral subdeterminants respectively for the full-line problem 1.1 . Since C E s

Ž 1r2 .T nE , this establishes the conjectured relation between D and the vacuumMr2 M
Ž w xexpectation value T . Note though the small differences in notation from Ref. 1 : asMr2

well as the negation of E already mentioned in the Introduction, a half-integer j has
been used to index the T operators in this paper, in line with the conventions of Refs.
w x w x w x8,29,30 , while in 1 the index was integer-valued. Thus in 1 the correspondence was

.with T rather than T .M Mr2
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4. Fusion relations and monodromy

The T-Q relation is not the only functional equation which arises in the context of the
Ž w x.T- and Q-operators see, for example, Refs. 8,11,27–30 . Further relations are conve-

niently expressed using the ‘fused’ T-operators T , which can be built up by a processj
known as fusion from the basic operator T. Introducing a half-integer valued index
js0, 1r2, 1, . . . , the first set of fusion relations, sometimes called a T-system, reads as
follows:

T qy 1r2l T q1r2l s1qT l T l , 4.1Ž . Ž . Ž .Ž . Ž .j j jq1r2 jy 1r2

Ž . Ž . Ž .where T l '1 and T l 'T l . The fused T’s can also be obtained from0 1r2

T l T q jq1r2l sT q jq1l qT q jl 4.2Ž . Ž .Ž . Ž . Ž .j jy 1r2 jq1r2

or

T l T qy j y 1r2l sT qy j y 1l qT qy jl . 4.3Ž . Ž .Ž . Ž . Ž .j jy 1r2 jq1r2

< :The vacuum states p are also eigenstates of these fused T-operators. In this section we
Ž . ² < Ž . < :shall show that the vacuum expectation values T l ' pT l p arise naturally inj j

Ž .the context of the Schrodinger equation 2.1 , leading to a reinterpretation of the fusion¨
relations and their truncations in terms of the behaviour of solutions to this equation
under analytic continuation.

# 4As remarked earlier, each pair of functions y , y provides a basis for the spacem mq1
Ž .of solutions to 2.1 . So far, we have only examined the expansion of y in the basisky 1

# 4y , y , but it is natural to ask about other possibilities. To this end, we extend thek kq1
˜Ž .definition 2.8 of C and C by settingk k

Žm. ˜Žm.y sC y qC y 4.4Ž .ky 1 k kqmy 1 k kqm

Ž1. ˜Ž1. ˜Ž . # 4so that C sC and C sC sy 1 . The change from the y , y basis tok k k k kqmy 1 kqm
# 4 Žm.the y , y basis is then effected by a 2 = 2 matrix C asky 1 k k

Ž .m Žm.˜C Cy y k kky 1 kqmy 1Žm. Žm.sC , C s . 4.5Ž .k ky y Žmy 1. Žmy 1.ž / ž / ˜k kqm ž /C Ckq1 kq1

This matrix depends on E and l, but not x. The following properties are immediate:

CŽm. E,l sCŽm. v 2E,l , 4.6Ž . Ž . Ž .k ky 1

C y 11 0 kŽ0. Ž1.C s , C s . 4.7Ž .k kž / ž /0 1 1 0

# 4Further relations reflect the fact that the change from the basis y , y tokqmqny 1 kqmqn
# 4 # 4 # 4y , y , followed by the change from y , y to y , y , has thekqmy 1 kqm kqmy 1 kqm ky 1 k
same effect as accomplishing the overall change in one go:

CŽm.CŽn. sCŽmqn. . 4.8Ž .k kqm k
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ŽThese express the consistency of the analytic continuations, and can be thought of as
.monodromy relations. Consider first the case ms1. We have
Ž . Ž .n Žn. nq1 Žnq1.˜ ˜C C C CC y 1 kq1 kq1 k kk s , 4.9Ž .ž / Žny 1. Žny 1. Žn. Žn.˜ ˜ž / ž /1 0 C C C Ckq2 kq2 kq1 kq1

which gives two non-trivial relations

C C Žn. y C Žny 1.sC Žnq1. 4.10Ž .k kq1 kq2 k

and

˜Žn. ˜Žny 1. ˜Žnq1.C C y C sC . 4.11Ž .k kq1 kq2 k

In addition, we have the initial conditions

C Ž0.s1, C Ž1.sC , 4.12Ž .k k k

˜Ž0. ˜Ž1.C s0, C sy 1. 4.13Ž .k k

˜Ž2. Ž1.Ž .The ns1 case of 4.11 shows that C sy C sy C ; and then the more generalk k k
equality

˜Žn. Žny 1.C sy C 4.14Ž .k k

Ž . Ž .follows on comparing 4.11 with 4.10 . If we now set

C Žn. E sC Žn. v y nq1E , 4.15Ž . Ž . Ž .0

Ž .then 4.10 is equivalent to

C E C Žn. v nq1E sC Žny 1. v nq2E qC Žnq1. v nE , 4.16Ž . Ž . Ž . Ž . Ž .
Ž . Ž0.Ž . Ž .and this matches the fusion relation 4.2 . Since C E s1sT E and, from the last0

Ž1.Ž . Ž . Ž 1r2 .section, C E sC E sT nE , this establishes the basic equality1r2

C Žn. E sT nE1r2 . 4.17Ž . Ž . Ž .nr2

Ž . Ž .It is easy to check that the fusion relation 4.3 emerges in a similar manner from 4.8
Ž .at ns1. To recover the T-system 4.1 , one more piece of information is needed.

Ž .Taking Wronskians in 4.4 yields
1 1

Žm. Žm.˜C s W , C sy W . 4.18Ž .k ky 1,kqm k ky 1,kqmy 12 i 2 i
Ž .An immediate consequence is the recovery of 4.14 , but we also obtain

C Žm.sy C Žy my 2. . 4.19Ž .k kqmq1

Ž . Žm. Žy m.Using this result, the nsy m case of 4.8 , namely C C s1, implies thatk kqm

C Žmy 1. v y 1E C Žmy 1. v E y C Žm. E C Žmy 2. E s1 . 4.20Ž . Ž . Ž . Ž . Ž .
Ž . Ž .Given the identification 4.21 , this is the T-system 4.1 , evaluated on the vacuum state

< : Ž .p . Finally, the formula 4.18 allows the function T to be expressed alternatively innr2
terms of a Wronskian,

1
1r2 Žn. y nq1T nE sC E s W v E . 4.21Ž . Ž . Ž . Ž .nr2 y 1,n2 i

This will be relevant in Section 7 below.



Finally the Y-system for the gauge invariant quantity 

  

which easily brings the T-system into the form 

  

Upon inverting the shift operator on the l.h.s., and 
using a suitable asymptotic as zero-mode, we can 
obtain non-linear integral equations with universal 
kernel 1/cosh, equivalent to physical TBA eqs. 
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6. Y-systems and dilogarithm identities

As mentioned in Section 4, there is a second set of functional relations, the so-called
Y-system, closely related to the T-system discussed in the previous sections. The
relation between these two systems is

Y E sCnq1 E Cny 1 E 6.1Ž . Ž . Ž . Ž .n

and the Y ’s fulfill the relation

Y vE Y vy 1E s 1qY E 1qY E . 6.2Ž . Ž . Ž . Ž . Ž .Ž . Ž .n n nq1 ny 1

Ž Ž . Ž . .For M integer or half-integer and ls0, this system truncates Y E sY E s0 ,0 2M
w xand it coincides with the A -related Y-system discussed in 4 .2My 1

On the other hand, the Y-functions are related to the solutions of TBA equations. In
this framework they encode finite-size effects in integrable quantum field theories, and,
through the consideration of ultraviolet limits, lead to certain remarkable sum rules for

Ž .the Rogers dilogarithm function involving the stationary Es0 solutions of the system
Ž .6.2 . For M integer and ls0, for example, the relevant sum rule is

2My 16 1 2My 1
L s sc , 6.3Ž .Ý UV2 ž /1qY 0 Mq1p Ž .nns1

Ž .where c is the central charge of the Z parafermionic conformal field theory, L xUV 2M
is the Rogers dilogarithm

x log y log 1y yŽ . Ž .1L x sy dy q , 6.4Ž . Ž .H2 1y y y0

Ž . Ž .and the values of the constants Y 0 involved in 6.3 aren

nq2 n
sin p sin pž /ž /2Mq2 2Mq2

Y 0 s . 6.5Ž . Ž .n p
2sin ž /2Mq2

Ž .With some additional complications, sum rules similar to 6.3 can be written for any
w x w x Ž .rational M 34 and arbitrary l. In 35 a generalisation of 6.3 involving the E-depen-

Ž . Ž . Ždent Y-functions was proposed. For an arbitrary solution Y E to 6.2 but again withn
.M an integer and ls0 the result is

2My 1 2Mq16 1
L s2 2My 1 . 6.6Ž . Ž .Ý Ý2 kž /p 1qY v EŽ .nns1 ks0

Dilogarithms also appear in certain volume calculations in three-dimensional manifolds
Ž w x. w xsee for example Ref. 36 , and related to this idea is the fact 37 that the general

Ž .solution to 6.2 can be expressed using cross ratios

ay c by dŽ . Ž .
a,b ,c,d s . 6.7Ž . Ž .

ay d by cŽ . Ž .
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2D CFT dictionary

Eigenvalues of statistical mechanics operators 
Q and T on the conformal primary (dimension) 

        

with ‘minimal model’ central charge    
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Let '(u) be a free chiral Bose field, i.e. the operator-valued function

'(u) = iQ + iPu +
X

n6 =0

a�n

n
einu. (2.1)

Here P,Q and an, n = ±1,±2, . . ., are operators which satisfy the commutation rela-
tions of the Heisenberg algebra

[Q,P ] =
i

2
�2; [an, am] =

n

2
�2�n+m,0 (2.2)

with real �. The variable u is interpreted as a complex coordinate on the 2D cylinder of
a circumference 2⇡. As follows from (2.1) the field '(u) is a quasi-periodic function of
u, i.e.

'(u + 2⇡) = '(u) + 2⇡iP. (2.3)

Let Fp be the Fock space, i.e. the space generated by a free action of the operators an

with n < 0 on the vacuum vector | pi which satisfies

an | pi = 0, for n > 0;
P | pi = p | pi.

(2.4)

The composite field

��2T (u) =: '0(u)2 : +(1� �2)'00(u) +
�2

24
(2.5)

is called the energy-momentum tensor; it is a periodic function of u and its Fourier
modes

Ln =
Z

⇡

�⇡

du

2⇡


T (u) +

c

24

�
einu (2.6)

generate the Virasoro algebra with the central charge (1.3) [17], [18]. It is well known
that for generic values of the parameters� and p the Fock spaceFp realizes an irreducible
highest weight Virasoro module V1 with the highest weight 1 related to p as

1 =
⇣ p

�

⌘2
+

c � 1
24

. (2.7)

For particular values of these parameters, when null-vectors appear inFp,V1 is obtained
from Fp by factoring out all the invariant subspaces. The space

F̂p = �
1

n=�1
Fp+n�2 (2.8)

admits the action of the exponential fields

V±(u) =: e±2'(u) : . (2.9)

Also, let E,F and H be canonical generating elements of the algebra Uq

�
sl(2)

�
[19],

i.e.
[H,E] = 2E, [H,F ] = �2F, [E,F ] =

qH
� q�H

q � q�1 , (2.10)

where q is given by (1.2) . Let j be a non-negative integer or half-integer number. We
denote ⇡j an irreducible 2j + 1 dimensional matrix representation of Uq

�
sl(2)

�
so that
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Ž .iii : If y1yMr2- l-Mr2, then the zeroes of C all lie away from the positive
real axis of the complex-E plane;
Ž . yiv : If M)1 then D has the large-E asymptotic

a0 my < < < <logD E,l ; yE , E ` , arg yE -p , 2.21Ž . Ž . Ž . Ž .
2

Ž .where ms Mq1 r2M and
` 1 1 11r2 12M Ma s2 t q1 y t dtsy G y y G 1q ; 2.22Ž . Ž .H0 2ž / ž /' 2M 2Mp0

Ž .v : If Es0 then
2 lq1

1q1 2 lq1 22Mq2yD 0,l s G 1q 2Mq2 . 2.23Ž . Ž . Ž .ž /' 2Mq2p

Ž . Ž . yProperty i follows from the definition 2.19 of D as a Wronskian, given that the
Ž .functions involved are themselves entire functions of E. Property ii is also straightfor-

yŽ . Ž .ward, since a zero of D E,l signals the existence of an eigenfunction for 1.6 at that
value of E, decaying as x lq1 as x 0, and exponentially as x q`. The self-adjoint
nature of this problem for l)y1r2 then ensures the reality of these zeroes. For l)0,

Ž . ) Ž .the potential is everywhere positive and multiplying 1.6 by c x and integrating
from 0 to ` shows that all of the eigenvalues E must also all be positive. For

Ž . 2y1r2- l-0 the centrifugal term in the potential, l lq1 rx , is negative but the
Ž .same style of argument can be applied to the transformed Eq. A.3 , with the conclusion

Ž .that the eigenvalues are again all positive. Property iii is more delicate, and further
discussion will be postponed until Section 3, where a partial result will be established.

Ž .Finally, property iv follows from a WKB analysis, which is outlined in Appendix A,
Ž .and property v from a mapping of the problem at Es0 into an exactly solvable case,

given in Section 3 below.
Ž .We now claim that for M)1 and y1r2- l-Mr2, the T-Q relation 2.20 and

Ž . Ž . Ž . yŽ .properties i – v characterise the functions C E,l and D E,l uniquely. Further-
more, with the identifications

1 2 lq1
2b s , ps 2.24Ž .

Mq1 4Mq4
Ž . Ž . Ž .the same T-Q relation and the same properties i – v hold for the functions T l, p and

Ž . w x 2 Ž . Ž .A l, p of 8 , save for l replacing E in i , the asymptotic in iv becomingq
2m1 m2 2< <log A l, p ; Mq1 G a yl , l ` ,Ž . Ž . Ž .q 0ž /2m

< 2 <arg yl -p , 2.25Ž . Ž .
Ž . Ž .and A 0, p being equal to one rather than the value given in v . The asymptotics canq

be made to agree by setting
y11y1r2m1r2lsnE , ns 2Mq2 G 2.26Ž . Ž .ž /2m
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finite-size system (say, with the spatial coordinate compactified on a circle of circum-
ference R) this problem becomes highly nontrivial and so far its solution is known to a
very limited extent. The most important progress here has been made with the help of
the so-called Thermodynamic Bethe Ansatz (TBA) approach [5], [6]. TBA allows one
to find the eigenvalues associated with the ground state of the system (in particular the
ground-state energy) in terms of solutions of the nonlinear integral equation (TBA equa-
tion). However it is not clear how the combination of thermodynamic and relativistic
ideas which is used in the traditional derivation of the TBA equation can be extended to
include the excited states.

The above diagonalization problem is very similar to that treated in solvable lattice
models. In the lattice theory very powerful algebraic and analytic methods of diago-
nalization of the Baxter’s families of commuting transfer-matrices are known [2], [7];
these methods are further developed in the Quantum Inverse Scattering Method (QISM)
[8], [9]. Of course many IQFT can be obtained by taking continuous limits of solvable
lattice models and the method based on commuting transfer-matrices can be used to
solve these QFT. This is essentially the way IQFT are treated in the QISM. However, for
many IQFT (notably, for most of IQFT defined as perturbed CFT [10]) the associated
solvable lattice models are not known. Besides, it seems to be conceptually important to
develop the above methods directly in continuous QFT, in particular, to find continuous
QFT versions of the Baxter’s commuting transfer-matrices.

This problem was addressed in our recent paper [1] where we concentrated attention
on the case ofConformal FieldTheory (CFT),more specifically on c < 1CFT.We should
stress here that although the structure of the space of states and the energy spectrum in
CFT are relatively well understood the diagonalization of the full set of the local IM
remains a very nontrivial open problem. In [1] we have constructed an infinite set of
operator valued functions Tj(�), where j = 0, 12 , 1,

3
2 , ... and � is a complex variable.

These operators (we will exhibit their explicit form in Sect. 2) act invariantly in the
irreducible highest weight Virasoro module V1 and they commute between themselves
for any values of �, i.e.

Tj(�) : V1 ! V1,

[Tj(�),Tj0 (�0)] = 0.
(1.1)

The operatorsTj(�) are defined in terms of certain monodromymatrices associated with
2j + 1 dimensional representations of the quantum algebra Uq(sl2) where

q = ei⇡�
2
, (1.2)

and � is related to the Virasoro central charge as

c = 13� 6
�
�2 + ��2�. (1.3)

Evidently, the operators Tj(�) are CFT versions of the commuting transfer-matrices of
the Baxter’s lattice theory. We will still call these operators “transfer-matrices” although
the original meaning of this term [7] apparently is lost. As we have shown in [1], in CFT
the operators Tj(�) enjoy particularly simple analytic properties, namely they are entire
functions of �2 with an essential singularity at �2 = 1 and their asymptotic behavior
near this point is described in terms of the local IM. Therefore the operators Tj(�) can
be thought of as the generating functions for the local IM since all the information about
their eigenvalues is contained in the eigenvalues ofTj(�). The operatorsTj(�) are shown
to obey the “fusion relations” which for any rational value of �2 in (1.2) provide a finite
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finite-size system (say, with the spatial coordinate compactified on a circle of circum-
ference R) this problem becomes highly nontrivial and so far its solution is known to a
very limited extent. The most important progress here has been made with the help of
the so-called Thermodynamic Bethe Ansatz (TBA) approach [5], [6]. TBA allows one
to find the eigenvalues associated with the ground state of the system (in particular the
ground-state energy) in terms of solutions of the nonlinear integral equation (TBA equa-
tion). However it is not clear how the combination of thermodynamic and relativistic
ideas which is used in the traditional derivation of the TBA equation can be extended to
include the excited states.

The above diagonalization problem is very similar to that treated in solvable lattice
models. In the lattice theory very powerful algebraic and analytic methods of diago-
nalization of the Baxter’s families of commuting transfer-matrices are known [2], [7];
these methods are further developed in the Quantum Inverse Scattering Method (QISM)
[8], [9]. Of course many IQFT can be obtained by taking continuous limits of solvable
lattice models and the method based on commuting transfer-matrices can be used to
solve these QFT. This is essentially the way IQFT are treated in the QISM. However, for
many IQFT (notably, for most of IQFT defined as perturbed CFT [10]) the associated
solvable lattice models are not known. Besides, it seems to be conceptually important to
develop the above methods directly in continuous QFT, in particular, to find continuous
QFT versions of the Baxter’s commuting transfer-matrices.

This problem was addressed in our recent paper [1] where we concentrated attention
on the case ofConformal FieldTheory (CFT),more specifically on c < 1CFT.We should
stress here that although the structure of the space of states and the energy spectrum in
CFT are relatively well understood the diagonalization of the full set of the local IM
remains a very nontrivial open problem. In [1] we have constructed an infinite set of
operator valued functions Tj(�), where j = 0, 12 , 1,

3
2 , ... and � is a complex variable.

These operators (we will exhibit their explicit form in Sect. 2) act invariantly in the
irreducible highest weight Virasoro module V1 and they commute between themselves
for any values of �, i.e.

Tj(�) : V1 ! V1,

[Tj(�),Tj0 (�0)] = 0.
(1.1)

The operatorsTj(�) are defined in terms of certain monodromymatrices associated with
2j + 1 dimensional representations of the quantum algebra Uq(sl2) where

q = ei⇡�
2
, (1.2)

and � is related to the Virasoro central charge as

c = 13� 6
�
�2 + ��2�. (1.3)

Evidently, the operators Tj(�) are CFT versions of the commuting transfer-matrices of
the Baxter’s lattice theory. We will still call these operators “transfer-matrices” although
the original meaning of this term [7] apparently is lost. As we have shown in [1], in CFT
the operators Tj(�) enjoy particularly simple analytic properties, namely they are entire
functions of �2 with an essential singularity at �2 = 1 and their asymptotic behavior
near this point is described in terms of the local IM. Therefore the operators Tj(�) can
be thought of as the generating functions for the local IM since all the information about
their eigenvalues is contained in the eigenvalues ofTj(�). The operatorsTj(�) are shown
to obey the “fusion relations” which for any rational value of �2 in (1.2) provide a finite



T, Q and the SW-NS periods (DF, D. Gregori)

Via AGT correspondence we quantise/deform the quadratic SW differential by the level 2 null vector eq. 
(Mathieu) 

  

Namely, quantum SW differential   and periods 

  

ODE/IM treatment of this eq. goes its non-compact (modified) version: two irregular singularities (M=-2) 

  

Gauge/integrability change of variable 

 

1 Essentials of N = 2 SU(2) Seiberg-Witten gauge theory

According to Seiberg-Witten theory [1], the low energy effective Lagrangian of 4d N = 2 SUSY SU(2) pure
gauge theory is expressed through an holomorphic function FSW(a(0)) called prepotential. It may be thought of as
constructed from the Seiberg-Witten one-cycle period a

(0) = 2h�i (� is the scalar field) and its (Legendre) dual

a
(0)
D = @FSW/@a

(0):

a
(0)(u,⇤) =

1

2⇡

Z ⇡

�⇡

p
2u� 2⇤2 cos z dz = ⇤

p
2(u/⇤2 + 1) 2F1(�

1

2
,
1

2
, 1;

2

1 + u/⇤2
) , (1.1)

a
(0)
D (u,⇤) =

1

2⇡

Z arccos(u/⇤2)�i0

� arccos(u/⇤2)�i0

p
2u� 2⇤2 cos z dz = �i⇤

(u/⇤2 � 1)

2
2F1(

1

2
,
1

2
, 2;

1� u/⇤2

2
) , (1.2)

which are functions of the modulus u = htr�2i (for fixed parameter ⇤1) upon eliminating u to obtain a
(0)
D (a(0))

(and finally integrating). The N = 2 SYM classical action enjoys a U(1)R R-symmetry, which is broken to Z8 by
one-loop and instanton corrections. Eventually it is broken down to Z4 by the vacuum, so that the (spontaneously)
broken part, which is a Z2, i.e. u ! �u, connects two equivalent vacua [1]: we will see that somehow this broken
symmetry plays an important rôle also in the deformed theory.

The exact partition function for N = 2 SYM theories, with all instanton corrections, has been obtained through
equivariant localisation techniques in [2, 3]: two super-gravity parameters, ✏1 and ✏2, the omega background deform
space-time. When both ✏1 , ✏2 ! 0, the logarithm of the partition function reproduces the Seiberg-Witten prepoten-
tial FSW [3]. The latter can also be thought of as a successive limit of the Nekrasov-Shatashvili (NS) limiting theory
[4], defined by the quantisation/deformation (of SW) ✏1 = }, ✏2 ! 0.

More specifically, having in mind the AGT corresponding Liouville field theory [5, 6] and precisely its level
2 degenerate field equation [7], we may think of it as a quantisation/deformation2 of the quadratic SW differential
which takes up the form of the Mathieu equation

� }2
2

d
2

dz2
 (z) + [⇤2 cos z � u] (z) = 0 . (1.3)

For the deformed prepotential FNS (logarithm of the partition function) may be derived as above by eliminating u

between the two deformed cycle periods [8]

a(}, u,⇤) = 1

2⇡

Z ⇡

�⇡
P(z; }, u,⇤) dz , aD(}, u,⇤) =

1

2⇡

Z arccos (u/⇤2)�i0

� arccos (u/⇤2)�i0
P(z; }, u,⇤) dz (1.4)

(in gauge theory a = 2h�̃i) of the quantum SW differential P(z) = �i
d
dz ln (z). In particular, we may expand

asymptotically, around } = 0, P(z)
.
=

P1
n=�1 }nPn(z), and then the NS-deformed periods (modes) are

a
(n)(u,⇤) =

1

2⇡

Z ⇡

�⇡
P2n�1(z;u,⇤) dz a

(n)
D (u,⇤) =

1

2⇡

Z arccos (u/⇤2)�i0

� arccos (u/⇤2)�i0
P2n�1(z;u,⇤) dz . (1.5)

Alternatively, we can use Matone’s formula for the prepotential [9], generalised for the deformations in [10].
This letter is organised as follows. In Section 2 we develop a very efficient and general idea of computing the

large energy and small } WKB expansion of the wave function (cf. also [11]), which we apply to give efficient
recursive formulæ for the NS-deformed periods modes. In Section 3 we present the analysis of the ODE/IM corre-
spondence for the Liouville integrable model, deeply based on an unfinished work [12] by the late scholar Al. B.

1We may calculate the first integral for u > ⇤2 while the second one for u < ⇤2 along a continuous (without jumps, and hence changing
sheet) path in z and then analytically continue in u; we will analyse better the complex structure below, in Section 5.

2We shall prefer this latter denotation as the former generates sometimes confusion with gauge theory quantisation.
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1 Essentials of N = 2 SU(2) Seiberg-Witten gauge theory
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which are functions of the modulus u = htr�2i (for fixed parameter ⇤1) upon eliminating u to obtain a
(0)
D (a(0))

(and finally integrating). The N = 2 SYM classical action enjoys a U(1)R R-symmetry, which is broken to Z8 by
one-loop and instanton corrections. Eventually it is broken down to Z4 by the vacuum, so that the (spontaneously)
broken part, which is a Z2, i.e. u ! �u, connects two equivalent vacua [1]: we will see that somehow this broken
symmetry plays an important rôle also in the deformed theory.

The exact partition function for N = 2 SYM theories, with all instanton corrections, has been obtained through
equivariant localisation techniques in [2, 3]: two super-gravity parameters, ✏1 and ✏2, the omega background deform
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More specifically, having in mind the AGT corresponding Liouville field theory [5, 6] and precisely its level
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d
dz ln (z). In particular, we may expand
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.
=

P1
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as well as the periodicity of T [12]

T (✓ + i⇡(1� p)) = T (✓) T̃ (✓ + i⇡p) = T̃ (✓) . (3.12)

Also the Liouville Y -system can be obtained from the QQ-system, by defining Y (✓) = Q(✓+ i⇡a/2)Q(✓� i⇡a/2),
where a = 1� 2p

Y (✓ + i⇡/2)Y (✓ � i⇡/2) =
⇣
1 + Y (✓ + ia⇡/2)

⌘⇣
1 + Y (✓ � ia⇡/2)

⌘
. (3.13)

This functional equation can be inverted into the Thermodynamic Bethe Ansatz (TBA) for the pseudoenergy "(✓) =
� lnY (✓)
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8
p
⇡3 q

�( b
2q )�(

1
2bq )

e
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Z 1

�1


1

cosh(✓ � ✓0 + ia⇡/2)
+

1

cosh(✓ � ✓0 � ia⇡/2)

�
ln
⇥
1 + exp{�"(✓0)}

⇤ d✓0

2⇡
,

(3.14)

with the coefficient of the forcing term (zero-mode) fixed as given by the leading order of Q below, (4.7). This TBA
equation goes into that in [12, 26, 27] upon a real shift on ✓. In it P does not appear explicitly, but (numerically)
in the asymptotic linear behaviour of "(✓, P 2) ' +4qP✓, P > 0, at ✓ ! �1 [12], which matches the analytic
computation of the wronskian (3.6) via 1 + Y (✓) = Q(✓ + i⇡/2)Q(✓ � i⇡/2) (on the other hand from (3.13) we
only know that Y must diverge).
The self-dual GME (b = 1 in (3.2)) is known in literature as modified Mathieu equation:

⇢
� d

2

dy2
+ 2e2✓ cosh y + P

2

�
 (y) = 0 , (3.15)

and is the non-compact version of equation (1.3), so establishing a contact with gauge theory (which importantly
exhibits two irregular singularities). In particular, the discrete symmetry (3.5) is an enhanced (by the covering
y = lnx) version of the original Z2 spontaneously broken symmetry (in the x variable) of SW [1]. Since a = 0 then
Q

2 = Y = exp[�"] and the TBA becomes an integral equation for the Baxter’s Q function [12]

lnQ(✓) = �8
p
⇡3

�2(14)
e
✓ +

Z 1

�1

ln
⇥
1 +Q

2(✓0)
⇤

cosh (✓ � ✓0)

d✓
0

2⇡
. (3.16)

4 One-step large energy recursion and local integrals of motion

We wish here to compute the Baxter’s Q function Q and then the Liouville Local Integrals of Motion (LIM). About
Q, (3.7) says that it can regarded as the regularised value of the solution V0 (3.4) at y ! +1:

Q(✓) = �i lim
y!+1

V0(y; ✓)

U1(y; ✓)
=

p
2e

✓
2 lim
y!+1

e
y
4b�2be✓+

y
2b
V0(y; ✓) . (4.1)

We can write V0 (3.4) in terms of ⇧(w) = �i d ln( 4
p
cb(y)V0(w))/dw in a convergent form of (2.5)
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e
� ✓

2

p
2 4
p
cb(y)

exp

⇢
�2

b
e
✓� by

2 + 2be✓+
y
2b +

Z y

�1

hp
cb(y0)⇧(y0; ✓)� e

✓(e�
by0
2 + e

y0
2b )

i
dy

0
�

(4.2)

where cb(y) = ��(y) = e
y/b + e

�yb and dw =
p
�(y)dy = �i

p
cb(y)dy. Now, we can write the asymptotic

expansion of the Q function (4.1) for ✓ ! +1, by using formula (2.8), as we are integrating on R and hence can
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Since the recursion for the Gelfand-Dikii coefficients is one-step, using formula (4.9) and (4.10) is a very efficient
way of computing the I2n�1, which have also been checked numerically by exploiting TBA equation (3.14). Besides,
we have repeated the calculations in the case of the minimal models and have found the same formulæ in terms of c
and � (as expected).

For b = 1 the recursion formula (4.10) simplifies hugely, so that we can write closed formulæ for the self-dual
Liouville LIM

I2n�1(b = 1, P 2) =
nX

k=0

⌥n,kP
2k (4.15)

at any n, as polynomials in P
2 with the first leading terms: ⌥n,n = (�1)n, ⌥n,n�1 = (�1)n 1

12n(n� 1
2), ⌥n,n�2 =

(�1)n 1
1440(n� 1)n(n� 1

2)(7n� 3
2)

5.

5 Baxter’s T and Q functions at self-dual point as Seiberg-Witten periods

This section is devoted at the b = 1 case, where we first analyse an important connexion between T (✓) = T̃ (✓)
and the Floquet exponent, as anticipated numerically by [12]. Then, we give both T and Q two peculiar SW
theory interpretations. As anticipated, in the self-dual GME (3.15), we shall rotate the real into the imaginary axis,
z = �iy � ⇡, and obtain the Mathieu equation

� d
2

dz2
 (z, ✓) +

h
2e2✓ cos z � P

2
i
 (z, ✓) = 0 . (5.1)

According to Floquet theorem, there exist two linearly independent (quasi-periodic) solutions of the Mathieu equa-
tion (5.1) of the form  +(z) = e

⌫z
p(z) and  �(z) = e

�⌫z
p(�z), with periodic p(z) = p(z + 2⇡) and monodromy

exponent ⌫ = ⌫(✓, P ), the Floquet index. Al. B. Zamolodchikov conjectured that the cosine of the Floquet index is
equal to the Baxter’s T function for the self dual Liouville model b = 1

T (✓, P 2) = 2 cosh
�
2⇡⌫(✓, P 2)

 
. (5.2)

We can gain some hints on the reason of this relation upon looking at the unique TQ relation (3.11) at b = 1

T (✓) =
Q(✓ + i⇡/2)

Q(✓)
+

Q(✓ � i⇡/2)

Q(✓)
, (5.3)

where in the r.h.s. there are these wronskians (cf. (3.6) et seq.) Q(✓) = W [U0, V0](✓), Q(✓±i⇡/2) = W [U±1, V0](✓),
all expressible in the Floquet basis. Nevertheless, we will leave the proof to another occasion since this identity has
a very relevant interpretation in gauge theory once we add the other important ingredient, namely the coincidence
of the quantum SW period (1.4) a = �i⌫ with the Floquet exponent (in any case we do have many numerical
and asymptotic checks of this relation besides the comparison with the few instanton Nekrasov partition function in
terms of Young diagrams6. More precisely, the Mathieu ODE/IM equation (5.1) coincides with the Seiberg-Witten
one (1.3), provided we set the change of variables

}
⇤

= e
�✓

,
u

⇤2
=

P
2

2e2✓
. (5.4)

Thus, the above (5.2) can be interpreted as a direct connexion between the Baxter’s T function and the quantum SW
period (1.4):

T (}, u,⇤) ⌘ T (✓, P 2) = 2 cos {2⇡a(}, u,⇤)} . (5.5)

5Hasmik Poghosyan has solved (4.10) for general b.
6We are seriously indebted with Rubik Poghossian and Hasmik Poghosyan on this point!
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I would say: for the same reason it is true that P(0+ + i⇡ + is) = �P(0� + i⇡ + is), for � arccosu/⇤2
< s < 0

that is P (z � i0) = P (z + i0) for � arccosu/⇤2
< z < 0. Hence

Z 0

� arccos(u/⇤2)
P(z � i0) dz +

Z � arccos(u/⇤2)

0
P(z + i0) dz = 2

Z 0�i0

� arccos(u/⇤2)�i0
P(z) dz =

Z +1

�1
Preg(y) dy .

(5.12)
Can we re-define the exact-period just on negative (or positive) z? Seiberg-Witten curve branch points indeed maps
in this: 0 and arccosu/⇤2 (then for } ! 0 it happens that P�1 is even). The last equality entails the connexion of
the self-dual Liouville Baxter’s Q function with the dual period (1.4):

Q(✓, P 2) ⌘ Q(}, u,⇤) = exp
n
2⇡iaD(}, u,⇤)

o
(5.13)

Strictly speaking, we have proven this for the range 0 < u < ⇤2 (} real), but we can immagine to extend the relation
by analytic continuation.

In consideration of the one to one relation between ✓ and } (5.4) we can use the first in place of the latter. Thus,
the Re ✓ ! +1 (small }) asymptotic expansions of T (✓) and Q(✓) in the strip |Im ✓| < ⇡

2 + ✏, ✏ > 0, are

T (✓, P 2) = T (✓, u)
.
= 2 cos

⇢
2⇡

1X

n=0

e
✓(1�2n)⇤2n�1

a
(n)(u,⇤)

�
(5.14)

Q(✓, P 2) = Q(✓, u)
.
= exp

⇢
2⇡i

1X

n=0

e
✓(1�2n)⇤2n�1

a
(n)
D (u,⇤)

�
. (5.15)

We now find a new way to compute the NS-deformed Seiberg Witten periods modes, which will also reveal itself
to be an asymptotic check of the identification (5.15). Considering the large energy asymptotic expansion (4.7) of
Q in terms of the LIM, we observe that, since in Seiberg Witten theory u is finite as ✓ ! +1, it is necessary that
also P

2(✓) = 2 u
⇤2 e

2✓ ! +1. In this double limit, an infinite number of LIMs I2n�1(b = 1) are re-summed into
an NS-deformed dual period mode (a sort of charge in its turn). Then the n-th mode of the Q function in the small
} expansion (5.15) is a series which gives the n-th dual period

2⇡ia(n)D (u,⇤) = �⇤1�2n
1X

k=0

2kCn+k⌥n+k,k

⇣
u

⇤2

⌘k
. (5.16)

From here, closed formulæ can be obtained through the previous powerful method for determining the LIM (4.15);
they are very simple series (cf. (2.13)) convergent in the circle |u| < ⇤2:

2⇡ia(0)D (u,⇤) = �⇤
1X

n=0


(�1)n2n

�2(n2 � 1
4)

4
p
⇡n!

�⇣
u

⇤2

⌘n
(5.17)

2⇡ia(1)D (u,⇤) = ⇤�1
1X

n=0


(�1)n2n

(n+ 1
2)�

2(n2 + 1
4)

48
p
⇡n!

�⇣
u

⇤2

⌘n
(5.18)

2⇡ia(2)D (u,⇤) = �⇤�3
1X

n=0


(�1)n2n

(n+ 3
2)(7n+ 25

2 )�
2(n2 + 3

4)

5760
p
⇡n!

�⇣
u

⇤2

⌘n
. (5.19)

Conversely, we can invert (5.16) and expresses the LIMs in terms of the the deformed periods. Therefore, thanks to
the quantum Picard-Fuchs equations (2.15-2.17), we can express explicitly the LIM themselves (4.15) at all orders.
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Y = Q2
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6 Functional relations, gauge TBA and Z2 symmetry

As we have a gauge interpretation (5.5) and (5.13) of the self-dual Liouville integrability Baxter’s T and Q functions,
respectively, we can search for a gauge interpretation of the integrability functional relations (the QQ system, the
TQ relation, the periodicity relation, cf. Section 3 with b = 1). First, we write the QQ relation (3.9) at b = 1, and
then the same in the gauge variables (5.4)

1+Q
2(✓, P 2) = Q(✓� i⇡/2, P 2)Q(✓+ i⇡/2, P 2) , 1+Q

2(✓, u) = Q(✓� i⇡/2,�u)Q(✓+ i⇡/2,�u) , (6.1)

where we have considered that ✓ ! ✓ ⌥ i⇡/2 means u ! �u (as P 2 is fixed). The latter equation, the gauge QQ

system, has been verified by using the expansion (5.15) in several complex regions of u, in particular in the circle
|u| < ⇤2. In the present case it is a ’square root’ of the Y system and then gives us the gauge TBA equations. In
fact, we can take the logarithm of both members and invert to obtain an explicit expression for lnQ(✓, u). As usual,
this inversion possesses zero-modes and so does not fix completely the forcing term. For it we need to consider the
asymptotic expansion (5.15) as Re ✓ ! +1, lnQ(✓, u) ' 2⇡ia(0)D (u,⇤)e✓/⇤. In this way we find a TBA integral
equation for the deformed dual period �2 lnQ(✓, u) = "(✓, u) = �4⇡iaD(}(✓), u) and then we close the system
by writing the same for modulus u ! �u

"(✓, u,⇤) = �4⇡ia(0)D (u,⇤)
e
✓

⇤
� 2

Z 1

�1

ln [1 + exp{�"(✓0,�u,⇤)}]
cosh (✓ � ✓0)

d✓
0

2⇡

"(✓,�u,⇤) = �4⇡ia(0)D (�u,⇤)
e
✓

⇤
� 2

Z 1

�1

ln [1 + exp{�"(✓0, u,⇤)}]
cosh (✓ � ✓0)

d✓
0

2⇡
.

(6.2)

In contrast with Liouville TBA (where was no P ), the forcing terms have non-trivial u-dependences, the SW periods
indeed, which can be interpreted (as in [23]) as the mass of a BPS state of a monopole and dyon (via Bilal-Ferrari
[15] formulæ, i.e. (6.7) for n = 0), respectively. Actually, the quantum period
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can take the place of the first period a(}, u) (linked to T in any case) as the latter can be expressed in terms of
the former two via (6.5). From the large ✓ asymptotic expansion of the integral part, we find all the quantum dual
periods modes (m � 1), as well
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By solving with numerical iterations the two coupled equations of gauge TBA (6.2), we tested these expressions
with the analytic WKB recursive periods (2.13, 2.14) for a region of the complex plane slightly larger than |u| < ⇤2.
The u = 0 unique equation from (6.2) was conjectured numerically in [28].

Consider now the TQ relation (3.11) at b = 1, which we also write in the gauge variables (5.4)
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For the asymptotic } ! 0 analysis of the latter relation, we keep only the dominant exponents (fixed by SW order
(5.17))
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6 Functional relations, gauge TBA and Z2 symmetry

As we have a gauge interpretation (5.5) and (5.13) of the self-dual Liouville integrability Baxter’s T and Q functions,
respectively, we can search for a gauge interpretation of the integrability functional relations (the QQ system, the
TQ relation, the periodicity relation, cf. Section 3 with b = 1). First, we write the QQ relation (3.9) at b = 1, and
then the same in the gauge variables (5.4)
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system, has been verified by using the expansion (5.15) in several complex regions of u, in particular in the circle
|u| < ⇤2. In the present case it is a ’square root’ of the Y system and then gives us the gauge TBA equations. In
fact, we can take the logarithm of both members and invert to obtain an explicit expression for lnQ(✓, u). As usual,
this inversion possesses zero-modes and so does not fix completely the forcing term. For it we need to consider the
asymptotic expansion (5.15) as Re ✓ ! +1, lnQ(✓, u) ' 2⇡ia(0)D (u,⇤)e✓/⇤. In this way we find a TBA integral
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can take the place of the first period a(}, u) (linked to T in any case) as the latter can be expressed in terms of
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By solving with numerical iterations the two coupled equations of gauge TBA (6.2), we tested these expressions
with the analytic WKB recursive periods (2.13, 2.14) for a region of the complex plane slightly larger than |u| < ⇤2.
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indeed, which can be interpreted (as in [23]) as the mass of a BPS state of a monopole and dyon (via Bilal-Ferrari
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By solving with numerical iterations the two coupled equations of gauge TBA (6.2), we tested these expressions
with the analytic WKB recursive periods (2.13, 2.14) for a region of the complex plane slightly larger than |u| < ⇤2.
The u = 0 unique equation from (6.2) was conjectured numerically in [28].
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Thus, the TQ relation entails

a
(n)
D (�u) = i(�1)n

h
� sgn (Im u) a(n)D (u) + a

(n)(u)
i
. (6.7)

These relations are, in fact, the extension of the Z2 symmetry relation in SW (n = 0) [15] to the NS-deformed
theory [29]. In a nutshell, the TQ relation encodes these Z2 relations among the asymptotic modes as a unique exact
equation. Besides, relation (6.7) – as well as the TQ relation – allows one to express the NS-periods completely in
terms of the NS-dual periods in the form: a(n)(u) = sgn (Im u) a(n)D (u)� i(�1)na(n)D (�u), into which we can use
the new formulas (5.16) (6.4) for a(n)D (u).

We finally consider the (integrability)T periodicity relation at b = 1 (3.12):

T (✓, P 2) = T (✓ � i⇡/2, P 2) T (✓, u) = T (✓ � i⇡/2,�u) (6.8)

To interpret this relation through the asymptotic identification (5.14). Thus, the (6.8) relation truncates to

exp
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= exp
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e
✓(1�2n)(�1)na(n)(�u)

o
(6.9)

from which, we deduce the Z2 symmetry relation for the other period [15] extended to the NS-deformed theory [29]

a
(n)(�u) = �i(�1)n sgn (Im u) a(n)(u) . (6.10)

We conclude that, thanks to the identifications (5.5) (5.13) between the integrability and gauge quantities, we can
interpret the Baxter’s TQ relation (6.5) and T periodicity relation (6.8) as non-perturbative Z2 symmetry relations.

7 Theories with matter and perspectives

As we will motivate in future, if the gauge theory possesses massless Nf = 1 flavours, the null-vector equation is
that of a Liouville theory with b = 1/

p
2, while Nf = 2 (still chiral) brings again b = 1. Chiral Nf = 3 should

involve again b = 1. Notice that the relation with integrability involves always T and Y (not Q) as, for instance, the
three node TBA of Nf = 1 proves. But still the possible rôle of b needs to be better investigated and understood.

Higher rank gauge groups keep the parallel (as one can see from the SU(3) case).
In conclusion, the powerful ODE/IM correspondence has been revealing a very suggestive connexion between

the quantum integrable models and ✏1-deformed Seiberg-Witten N = 2 supersymmetric gauge theories. And in
this sense the correspondence yields a natural quantisation scheme for general SW theory: (the suitable power of)
the SW differential becomes quantised as differential operator or oper whose cycles (periods) or monodromies are
encoded into the connexion coefficients (for instance, of the ODE/IM). A latere, an efficient asymptotic expansion
technique is presented: a one-step recursion for the computation of the WKB asymptotic expansions of the wave
function both for large energy and small Planck constant, or, in other words, the local integrals of motion of Liouville
CFT and the expansion modes of the deformed Seiberg-Witten periods. Eventually, they are related each other by
our gauge/integrability link. And must satisfy all orders Pichard-Fuchs equations. It would be also interesting to
explore the implications for the cycles and periods as described in [30] [31].

The rôle of the R-symmetry and its breaking in connexion with integrability deserve more investigations, but
a simple parallel we can put forward is the similarity with planar N = 4 SYM, where the residual symmetry and
integrability are used to construct the spectrum [32].

Besides the long time thinking about these topics (at least since the collaboration [30], see also [33]), the sending
out of the present work has been today prompted by the appearance of the paper [34] which may overlap with ours.

Acknowledgments. We are particularly indebted to R. Poghossian and H. Poghosyan for many important sug-
gestions, numerical integrations and checks (especially by mean of instanton calculus). Moreover, we would like
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form (3.1) not adequate for the large rapidity expansion, as e↵ appears with two different powers. We have solved
this problem by the shift y ! y + ↵

b�1/b
b+1/b , after which the GME acquires the modified Schrödinger form:

⇢
� d

2

dy2
+ e

2✓(ey/b + e
�yb) + P

2

�
 (y) = 0 (3.2)

with the rapidity ✓ defined as ✓ = ↵/(b + b
�1). In the rest of this Section we will summarise our understanding of

draft paper [12] by using the GME (3.2). It has the subdominant asymptotic solutions: for Re y ! +1, within
|Im (✓ + y

2b)| <
3
2⇡ and for Re y ! �1, within |Im (✓ � by

2 )| <
3
2⇡, respectively

U0(y) '
1p
2
exp

n
�✓/2� y/4b

o
exp
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�2be✓+y/2b

�
Re y ! +1 ; (3.3)

V0(y) '
1p
2
exp

n
�✓/2 + yb/4

o
exp

⇢
�2

b
e
✓�yb/2

�
Re y ! �1 . (3.4)

Other solutions can be generated applying on these the following discrete symmetries of the GME (3.2)

⇤b : ✓ ! ✓ + i⇡
b

q
y ! y +

2⇡i

q
, ⌦b : ✓ ! ✓ + i⇡

1

bq
y ! y � 2⇡i

q
(3.5)

where q = b + 1/b: concisely Uk = ⇤k
bU0 and Vk = ⌦k

bV0, with Uk invariant under ⌦b and Vk under ⇤b. We
may interpret this phenomenon as a spontaneous symmetry breaking for the differential equation (vacua are the
solutions). Now we apply these (broken) symmetries to derive interesting functional and integral equations for the
gauge theory. On the other hand, the symmetry ⇧ : ✓ ! ✓ + i⇡ would not do the same job in the present case with
two irregular singularities as it transforms simultaneously U0 ! U1 and V0 ! V1 (differently from [23] and [24]
with only one irregular singularity, see also [25] for a detailed examination of the two kinds of symmetries).

In fact, we will prove correct (as conjectured by [12]) to define the Baxter’s Q function as the wronskian

Q(✓, P 2) = W [U0, V0] . (3.6)

Definition (3.6) gives rise to Q(✓ + i⇡p) = W [U1, V0](✓) upon action of ⇤b: these are equivalent to the linear
dependence

iV0(y) = Q(✓ + i⇡p)U0(y)�Q(✓)U1(y) , (3.7)

where p = b/q (from the asymptotic calculation W [U1, U0] = i). Which is transformed by ⌦b into

iV1(y) = Q(✓ + i⇡)U0(y)�Q(✓ + i⇡(1� p))U1(y) , (3.8)

namely Q(✓+i⇡(1�p)) = W [U0, V1](✓) and Q(✓+i⇡) = W [U1, V1](✓). The basilar functional relation (anticipated
for the massive theory by other means in [26]), the QQ relation is obtained by taking the wronskian W [V0, V1] (= i

from asymptotics) between the right hand sides

1 +Q(✓ + i⇡(1� p))Q(✓ + i⇡p) = Q(✓ + i⇡)Q(✓) . (3.9)

If we define the two (dual) T functions as

T (✓) = Q(✓ � i⇡p)Q(✓ + i⇡)�Q(✓ + i⇡p)Q(✓ + i⇡(1� 2p)) , T̃ (✓) = T (✓)
���
b!1/b

, (3.10)

(also T = iW [U�1, U1] and T̃ = �iW [V�1, V1]) by using the QQ relation (3.9), these two Baxter’s TQ relations
follow

T (✓)Q(✓) = Q(✓ + i⇡p) +Q(✓ � i⇡p) T̃ (✓)Q(✓) = Q(✓ + i⇡(1� p)) +Q(✓ � i⇡(1� p)) , (3.11)
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A third way to TBA: the OPE for 
null polygonal WLs

Theory: N=4 SYM in planar limit    

Dual to quantum area of II B string theory on    

Light-like polygons can be decomposed into light-like 
Pentagons (and Squares): an Operator Product Expansion 

Prototype: Hexagon into two Pentagons P 

The same as two-point correlation function <PP> into 
Form-Factors in quantum integrable 2D field theories 

� = Ncg
2
YM , Nc ! 1

AdS5 ⇥ S5



In a picture: 

Which mathematically means: 

W=𝚺 exp(-rE)<0|P|n><n|P|0> 

=<PP>: the same as 2D Form Factor (FF) decomposition 

Form-Factors obey axioms with the S-matrix: 1)Watson eqs., 2) Monodromy 
(q-KZ), 3) Kinematic Poles, 4) Bound-state eqs. etc. 

We had to modify the 2) (and 3)) (for twist fields) 

Eigen-states |n>? 2D excitations over the GKP folded string (of length=2 ln 
s) which stretches from the boundary to boundary (for large s) of AdS.

4
1

2 3

56
1’

4’
=P(12341’) P(14’456)

In general: E-5 shared squares, E-4 pentagons

Multi-P correlation function:general m,n transition

hexagon



The quantum GKP string can be represented by 
the quantum spin chain vacuum (gauge) 

2D particles: 6 scalars, 2 gluons, 4+4 
(anti)fermions Bethe states: 

Scattering over the GKP vacuum: 

Two-body is enough because of integrability

O1�particle = Tr ZDs�s0

+ 'Ds0

+Z + . . .

⌦GKP = Tr ZDs
+Z + . . .

' = Z,W,X, F+?, F̄+?, +,  ̄+

On the same footing, we start wondering in [21] about the scattering S-matrix which may be
attached to the two-particle states (of, at least, twist-4)

O2−particles = Tr ZDs−s1−s2
+ ϕ1D

s1
+ϕ2D

s1
+Z + . . . , (1.6)

where ϕ1 and ϕ2 may be any general elementary local field as ϕ in (1.5), whereas in [21] we confined

our attention to the peculiar (cf. below) case ϕ1 = ϕ2 = Z. In fact, as argued above, we expect
the Beisert-Staudacher quantisation conditions to give correct results at leading ln s and next to
leading order (ln s)0. And then, regarding R ∼ ln s as the size of the system, these orders are

exactly the ones we need to write down 2D (many-particle) scattering amplitudes, i.e. (on-shell)
quantisation conditions, for rapidities of excitations on the GKP vacuum. Generalising to all the

other scalars, [22] have deduced the entire SO(6) scattering, while we have computed in [23] all the
g-depending scalar factors of the different scattering channels, neglecting the SU(4) representation
structure.

Moving from this lack, we shall make here our analysis deeper, by computing explicitly the
matrix structures of the different SU(4) representations carried by the ’elementary’ particles and

by their bound states. We will not only consider the two-body scattering, but also in general the
multi-particle 2D scattering amplitudes. As a byproduct we will see a well know characterisation of

integrable theories, namely the elasticity and factorisation, i.e. the determination of many-particle
scattering by the two-particle one. Besides the traditional name of Bethe-Yang equations, we can
call these quantisation conditions Asymptotic Bethe Ansatz equations as well, but now the term

’Asymptotic’ refers to the new length ∼ ln s, which measures the validity of the equations (and
to the ’new’ vacuum). More precisely, from the BMN (ferromagnetic) vacuum [24] (no roots) we

will switch on, in the Beisert-Staudacher equations, the configurations corresponding to the GKP
(antiferromagnetic) vacuum and to all possible ’elementary’ excitations over the GKP vacuum;

to accomplish this, we will be using the idea of converting many (Bethe) algebraic equations
describing an excited state into few non-linear integral equations (NLIEs) [25, 26, 27, 12, 13]. In
this way, we will obtain the quantisation conditions of all the ’elementary’ excitations over the

GKP vacuum and show that the structure of these equations coincides with Bethe equations of
a inhomogeneous spin chain of length R = 2 ln s with two identical (purely transmitting) defects

and a SU(4) symmetry in different representations (where the particle rapidities represent the
inhomogeneities). Of course, the scalar pre-factors in front of the above SU(4) matrix structure
are dependent on g and characteristic of the theory (and GKP vacuum). Nevertheless, we can

express all in terms of the scalar-scalar one [23]. Moreover, we will discuss in many details the
consequences of switching to a different vacuum which basically means that any elementary particle

interacts with the sea of covariant derivatives namely the type-4 roots. For instance, the poles
of the new 2D scattering factors of these particle imply the entrance of bound states thereof into

the spectrum and then the existence of new scattering amplitudes for the latter particles. As
anticipated, not only the 2D scattering amplitudes, but also many physical quantities assume
novel expressions, as for instance the energy, momentum [20] and all the other conserved charges

carried by a single elementary or composite excitation (cf. below). Furthermore, the scattering
of any particle onto two defects arises, as anticipated in [22, 23], though they were absent in the
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FFs series summing to TBA
Quite unique example of Form-Factor series re-
summation. Result: thermodynamic bubble Ansatz of 
string minimal area at strong coupling (Alday-Gaiotto-Maldacena) 

The key idea: Hubbard-Stratonovich transformation 
replaces the infinite sums with a path integral 

                     : saddle  point eqs. are TBA eqs.

W (g)
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For the simplest hexagon, equivalent to the A3 TBA(Al. Zamolodchikov). 

We also reproduced the general E-gon: A3x(E-5 columns): delicate 
determination of the convolution integration contours 

We reproduced TBA with only gluons and ‘mesons’(world-sheet meson is a 
2D fermion-antifermion bound state only at strong coupling, other particle 
contribution is superficially 1-loop)  

New way to consider: 1)TBA from spectral series which gives rise to a Yang-
Yang functional(=area)(similar to how it arises in N=2 SYM (Nekrasov-
Shatashvili)); but here 2)PDE/quantum Integrable Model, PDE is a 
classical Lax pair. 

Very recently we have found ODE/IM also for NS regime. 

Weak coupling (gauge) results: tree level and 1-loop (Basso,Sever,Vieira+Perimeter). 2-
loops (Dixon,Drummond et al.) by using field theory methods.



Scalars contribution scales as 

the same order as the classical minimal area: 

Check with Knizhnik twist field dimension  

and we can also compute beyond leading: new 
feature is divergency (asymptotic freedom of 
O(6) NL Sigma Model).

lnW =

p
�

⇡

+1X

n=1

1

(2n)!

Z 2n�1Y

i=1

d↵i
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g
(2n)(↵1, . . . ,↵2n�1) +O(ln

p
�)

�
p
�

2⇡
AE

�↵ =
c

12
(k � 1/k), ↵ = 2⇡k � 2⇡ = ⇡/2, c = 5



Some Perspectives
Non-linear integral or functional equations are powerful and are the 
monodromies of a ODE or PDE. There is any deep reason why these 
(TBA) are reproduced by an integrable Form Factor series of a ‘weird’ 
scattering theory? 

Saddle point: classical string  Quantisation? Quantum PDE/IM? q-
TBA? 

NS limit  : ODE/IM       : quantum ODE/IM? 

On the contrary: meaning of    of our Liouville field theory (not AGT)? 

Formal similarity between OPE series and N=2 (Nekrasov) partition 
function: e.g. ADHM set-up: meaning? With Poghossians.

✏2 = 0 ✏1 = ~ ✏2 6= 0
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