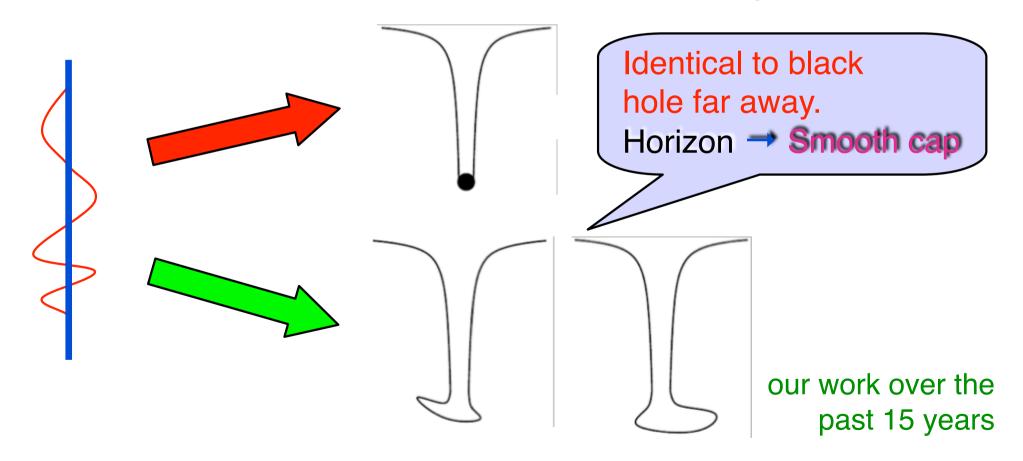
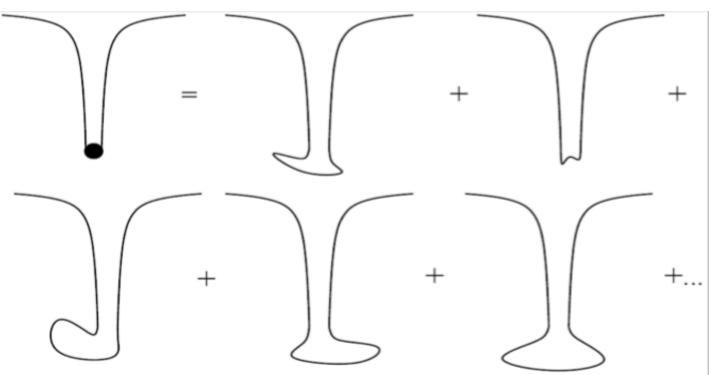

Black hole µ-state geometries, antibranes & the dS landscape

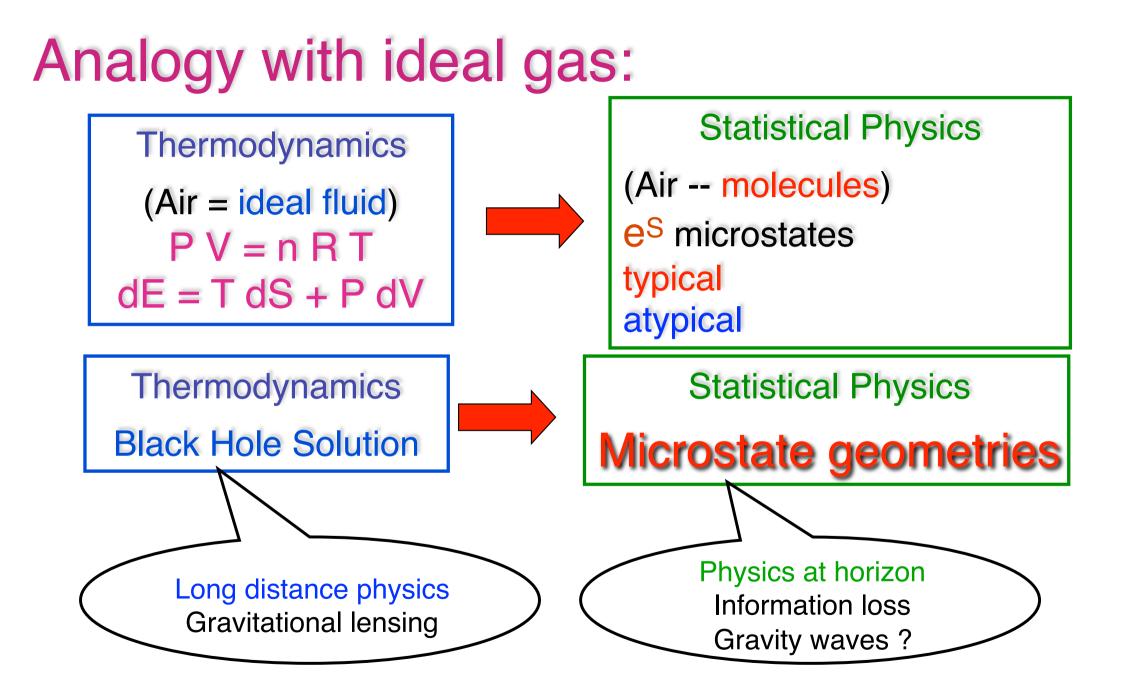
losif Bena IPhT, CEA Saclay


Strominger and Vafa (1996): Black Hole Microstates at Zero Gravity (branes + strings) Correctly match B.H. entropy !!!

One Particular Microstate at Finite Gravity:

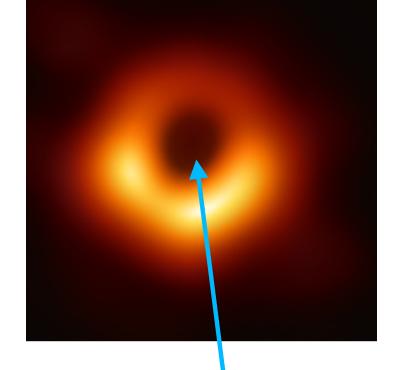

Susskind Horowitz, Polchinski Damour, Veneziano Strominger and Vafa (1996): Black Hole Microstates at Zero Gravity (branes + strings) Correctly match B.H. entropy !!!

One Particular Microstate at Finite Gravity:



BIG QUESTION: Are all black hole microstates given by configurations with no horizon ?

Plack hole = ensemble of horizonless microstate configurations Mathur 2003

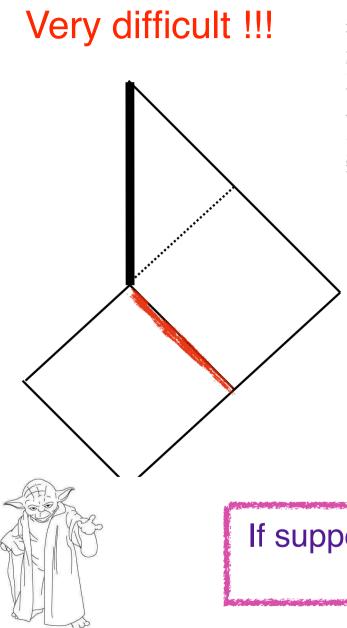

Only way to solve QM-GR conflict Mathur 2009, Almheiri, Marolf, Polchinski, Sully 2012

Not some hand-waving idea - provable by rigorous calculations in String Theory Structure@horizon in vogue these days

- Gravastars
- Quark-stars
- Boson-stars
- Gas of wormholes (ER=EPR)
- Quantum Black Boxes
- BMS / Soft hair & horizon
- Quantum Pixie Dust
- Modified gravity
- Bose-Einstein condensate of gravitons
- Infinite density firewall hovering just above horizon

Here Be Microstructure

Three Very Stringent Tests


1. Growth with G_N \leftrightarrow BH size for any mass

- Normal objects shrink; BH horizon grows
- BH microstate geometries grow like BH
- Highly nontrivial mechanism: $G_N = g_s^2$
- D-branes = solitons, tension ~ $1/g_s \rightarrow$ lighter as G_N increases

To build structure@horizon, non-perturbative degrees of freedom you must use !

- Boson stars need scalar fields of different masses to replace various BH's: One field for M[™], another for 30 M[™], etc.
- String theory non-perturbative d.o.f. → fields whose mass decreases for larger BH

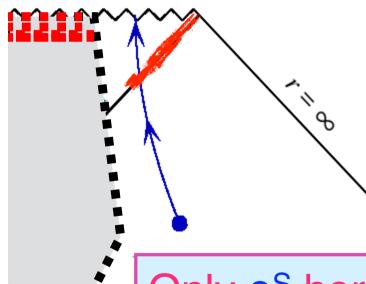
2. Mechanism not to fall into BH

GR Dogma: Thou shalt not put anything at the horizon !!!

- Null → speed of light.
- If massive: ∞ boost $\rightarrow \infty$ energy
- If massless: dilutes with time
- Nothing can live there ! (or carry degrees of freedom)
- No membrane, no spins, no "quantum stuff"
- No (fire)wall

If support mechanism have you not, go home and find one

"Quantum Coyote principle"


Quantum Coyote Principle

GRAVITY DOES NOT WORK TILL YOU LOOK DOWN

Such is the fate of Firewalls, quantum black boxes, Mirrors & their brothers

3. Avoid forming a horizon

- Collapsing shell forms horizon
 Oppenheimer and Snyder (1939)
- If curvature is low, no reason not to trust classical GR
- By the time shell becomes curved-enough for quantum effects to become important, horizon in causal past (180 hours for TON618 BH)

Backwards in time - illegal !

BH has e^{S} microstates with no horizon Small tunneling probability = e^{-S} Will tunnel with probability ONE !!! Kraus, Mathur; Bena, Mayerson, Puhm, Vercnocke

Only e^s horizon-sized microstates can do it !

Black hole entropy the structure must have

Rules out gravastars

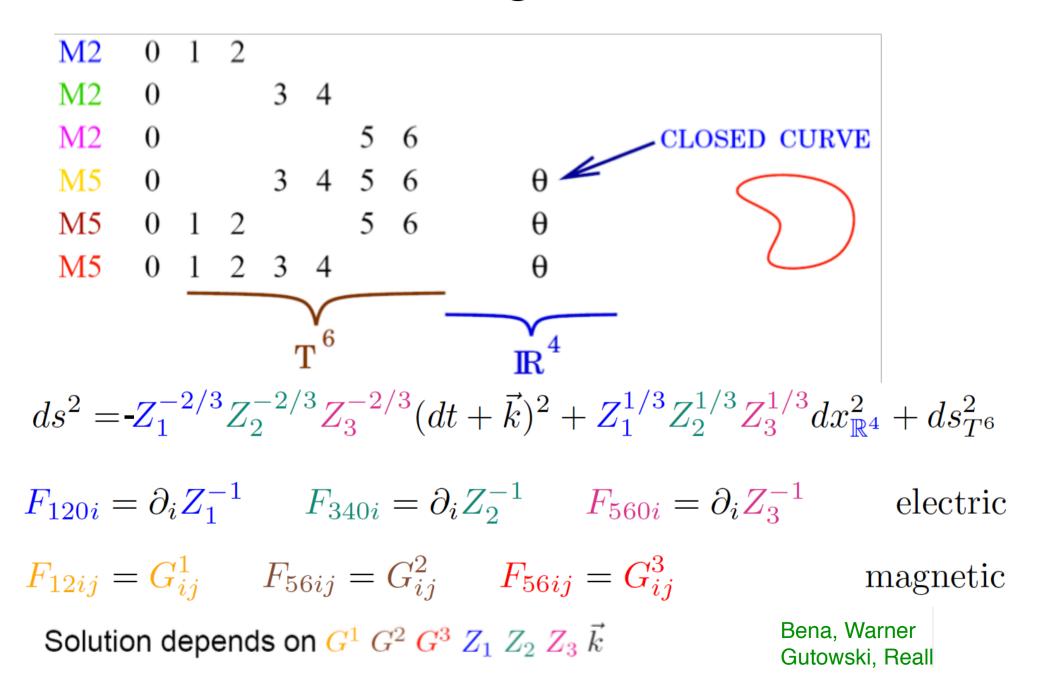
Microstate geometries

 M2
 0
 1
 2

 M2
 0
 3
 4

 M2
 0
 5
 6

3-charge 5D black hole Strominger, Vafa; BMPV


$$S_{BMPV} = 2\pi\sqrt{N_1N_5N_P - J^2}$$

$$ds^{2} = -Z_{1}^{-2/3} Z_{2}^{-2/3} Z_{3}^{-2/3} (dt + \vec{k})^{2} + Z_{1}^{1/3} Z_{2}^{1/3} Z_{3}^{1/3} dx_{\mathbb{R}^{4}}^{2} + ds_{T^{6}}^{2}$$

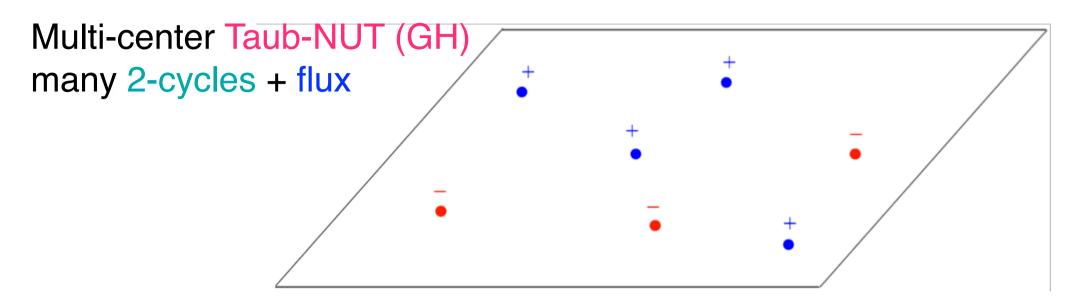
 $F_{120i} = \partial_i Z_1^{-1}$ $F_{340i} = \partial_i Z_2^{-1}$ $F_{560i} = \partial_i Z_3^{-1}$ electric

Want solutions with same asymptotics, but no horizon

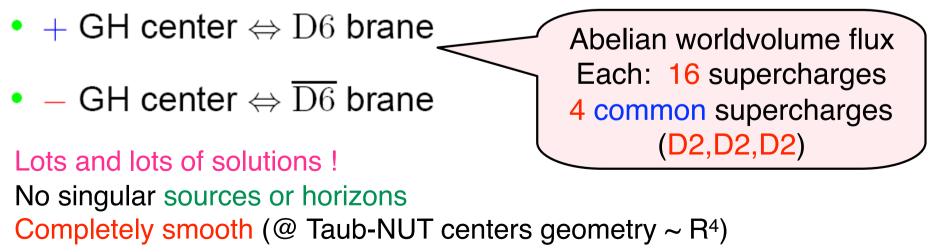
Microstate geometries

Microstates geometries: M2-M2-M2 frame 11D SUGRA / T⁶

5D 3-charge BH (Strominger-Vafa)


Linear system 4 layers:

Bena, Warner Gutowski, Reall $\mathbb{R}^{4} \text{ base (4D Hyper Kahler)} \\ *G^{I} = G^{I} \\ d * dZ_{1} = G^{2} \wedge G^{3} \\ \hline d\vec{k} + *d\vec{k} = G^{1}Z_{1} + G^{2}Z_{2} + G^{3}Z_{3}$


Focus on Gibbons-Hawking (Taub-NUT) base:

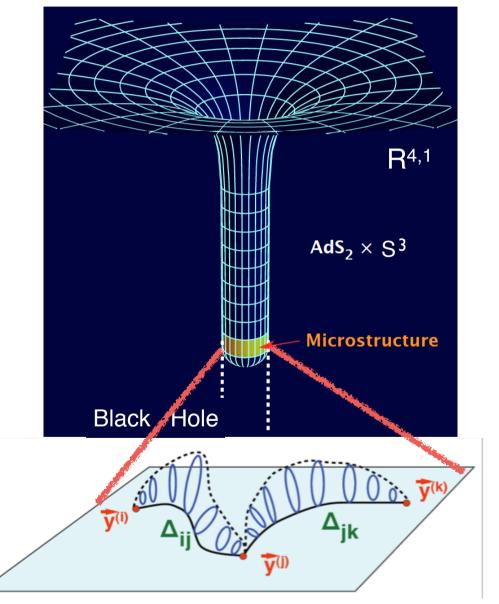
 $ds^{2} = V \left(dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2} \right) + V^{-1} (d\psi + \vec{A})^{2}$ $\nabla \times \vec{A} = \nabla V$ $V = \frac{1}{r} \qquad \mathbb{R}^{4}$ $V = 1 + \frac{1}{r} \qquad \text{Taub-NUT}$ Bena, Kraus, Warner

Simplest Microstate Geometries

Compactified to $4D \rightarrow$ multicenter configuration Denef

Same mass, charge, size as BH with large horizon area

Microstates geometries: M2-M2-M2 frame


• Where is the BH charge ?

 $L = q A_0 \qquad \text{magnetic} \\ L = \dots + A_0 F_{12} F_{34} + \dots$

- Where is the BH mass ?
 - $E = \dots + F_{12} F^{12} + \dots$
- BH angular momentum

 $J = E \times B = ... + F_{01} F_{12} + ...$

Charge dissolved in fluxes. No singular sources. Klebanov-Strassler 11d/CY - black hole in 5d

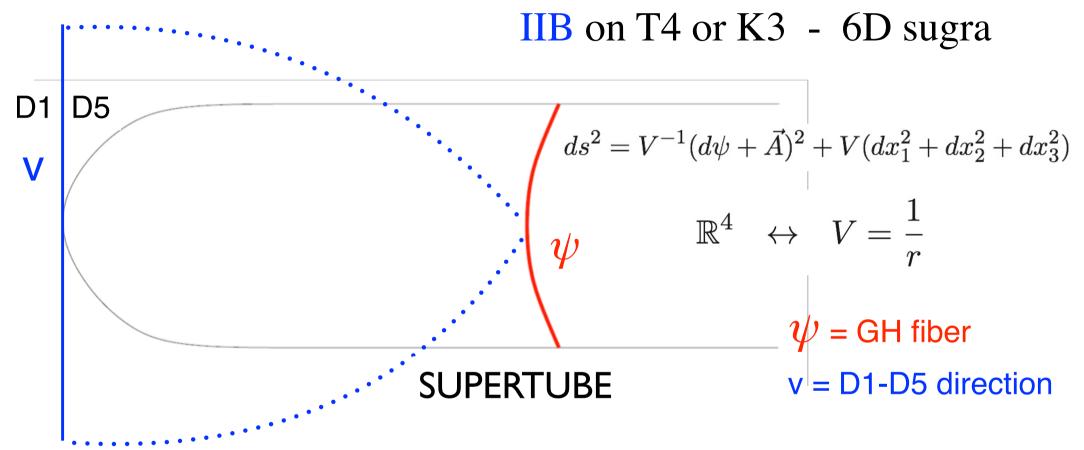
2-cycles + magnetic flux

Even more general solutions

Bena, deBoer, Shigemori, Warner

- Supertubes (locally 16 susy) 8 functions of one variable (c = 8)
- Superstrata (locally 16 susy) 4 functions of two variables (c=∞)
- Double supertube transition: $D1-D5 \Rightarrow$ supertube **D1-D5** (no momentum) supertube + D1-D5 + momentum wave momentum wave SUPERSTRATUM

Superstrata



actual construction

architect's plan

Microstates geometries: D1-D5-P frame

- Starting solution: AdS₃ x S³
 Add wiggles
- Arbitrary $F(\psi)$ 8 supercharges supertube Lunin, Mathur; Lunin, Maldacena, Maoz; Taylor, Skenderis
- Arbitrary $F(\psi, \mathbf{v})$ 4 supercharges superstratum Bena, Giusto, Russo, Shigemori, Warner

Largest family of solutions known to mankind

Arbitrary fns. of 3 variables: $\infty X \propto X \infty$ parameters ! Cohomogeneity - 5 ! Bena, Giusto, Busso, Shigemori, Warner,

$$ds_{10}^{2} = \frac{1}{\sqrt{\alpha}} ds_{6}^{2} + \sqrt{\frac{Z_{1}}{Z_{2}}} d\hat{s}_{4}^{2},$$

$$ds_{6}^{2} = -\frac{2}{\sqrt{\mathcal{P}}} (dv + \beta) \left[du + \omega + \frac{\mathcal{F}}{2} (dv + \beta) \right] + \sqrt{\mathcal{P}} ds_{4}^{2},$$

$$e^{2\Phi} = \frac{Z_{1}^{2}}{\mathcal{P}},$$

$$B = -\frac{Z_{4}}{\mathcal{P}} (du + \omega) \wedge (dv + \beta) + a_{4} \wedge (dv + \beta) + \delta_{2},$$

$$C_{0} = \frac{Z_{4}}{Z_{1}},$$

$$C_{2} = -\frac{Z_{2}}{\mathcal{P}} (du + \omega) \wedge (dv + \beta) + a_{1} \wedge (dv + \beta) + \gamma_{2},$$

$$C_{4} = \frac{Z_{4}}{Z_{2}} \widehat{vol}_{4} - \frac{Z_{4}}{\mathcal{P}} \gamma_{2} \wedge (du + \omega) \wedge (dv + \beta) + x_{3} \wedge (dv + \beta) + \mathcal{C},$$

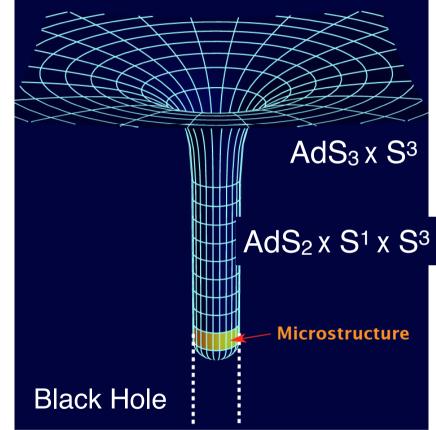
$$C_{6} = \widehat{vol}_{4} \wedge \left[-\frac{Z_{1}}{\mathcal{P}} (du + \omega) \wedge (dv + \beta) + a_{2} \wedge (dv + \beta) + \gamma_{1} \right]$$

$$String \frac{Z_{4}}{\mathcal{P}} theorem (dv + \beta),$$

$$\widetilde{r} put = Of theorem (dv + \beta),$$

$$\widetilde{r} put = Of theorem (dv + \beta),$$

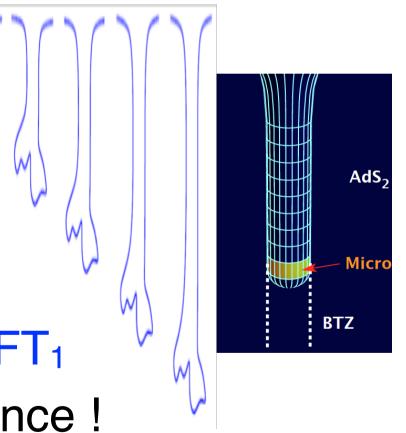
Bena, Giusto, Russo, Shigemori, Warner, 2015 Heidmann, Mayerson, Walker, Warner, 2019


$$\begin{split} & \omega_r^{(2)} = -\frac{R\,r}{\sqrt{2}\,k_2(m_1^2-1)} \, \frac{m_1(k_2+m_1+1)\Delta_{k_2+m_1-1,m_1-1}+(k_2+m_1-1)\Delta_{k_2}}{(r^2+a^2)^2} \\ & \omega_{\theta}^{(2)} = \frac{R}{\sqrt{2}\,k_2(m_1^2-1)a^2\sin\theta\cos\theta} \left[2(m_1-1)\Delta_{k_2+m_1-3,m_1-1} \right. \\ & + (m_1-1)(m_1-2)\Delta_{k_2+m_1-1,m_1-1}+m_1(k_2-2)\Delta_{k_2+m_1-1,m_1+1} \\ & - m_1(m_1-1)\Delta_{k_2+m_1+1,m_1-1}+(m_1^2(k_2-1)+1)\Delta_{k_2+m_1+1,m_1+1} \right], \\ & \omega_{\phi}^{(2)} = -\frac{R}{\sqrt{2}} \frac{\Delta_{k_2+m_1+1,m_1+1}}{\Sigma} \sin^2\theta - \frac{R}{\sqrt{2}\,k_2(m_1^2-1)a^2} \left[2(m_1-1)\Delta_{k_2+m_1-3,m} \right. \\ & + (m_1^2-2m_1+k_2-1)\Delta_{k_2+m_1-1,m_1-1}+m_1(k_2-2)\Delta_{k_2+m_1-1,m_1+1} \\ & + m_1(k_2-m_1-1)\Delta_{k_2+m_1+1,m_1-1}+(k_2(m_1^2+m_1-1)-m_1(m_1+1)) \right] \\ & \omega_{\psi}^{(2)} = -\frac{R}{\sqrt{2}} \frac{\Delta_{k_2+m_1+1,m_1+1}}{\Sigma} \cos^2\theta - \frac{R}{\sqrt{2}\,k_2(m_1^2-1)a^2} \left[(k_2-1)(m_1-1)\Delta_{k_2,m_1-1,m_1-1} \\ & - (m_1-1)(k_2-3)\Delta_{k_2+m_1-1,m_1+1}+m_1(m_1-1)\Delta_{k_2+m_1+1,m_1-1} \\ & - (m_1-1)(m_1(k_2-1)+1)\Delta_{k_2+m_1+1,m_1+1} \right]. \end{split}$$

Habemus Superstratum !!!

Deep superstrata

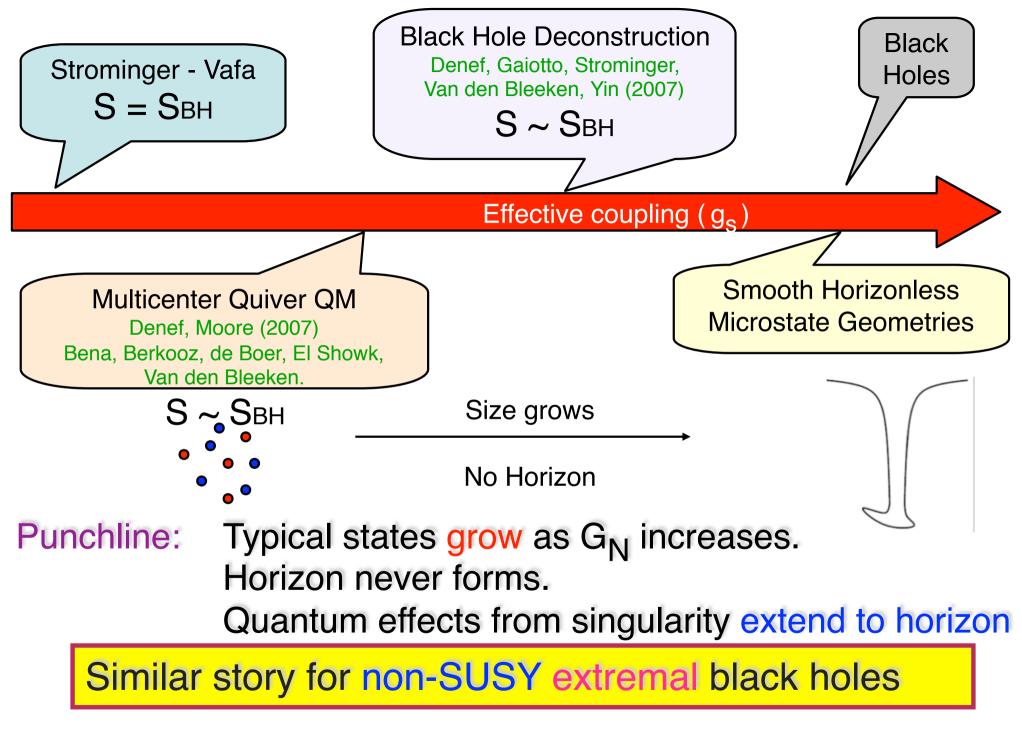
- J can be arbitrarily small Bena, Giusto, Martinec Russo, Shigemori, Turton, Warner '16 (PRL editor's selection)
- First BTZ microstates
- CFT dual state known
- Certain superstrata (1,0,n) Wave equation separable ! Bena, Turton, Walker, Warner
- Can compute many things: Geodesics Tyukov, Walker, Warner
 Mass gaps Bena, Heidmann, Turton
 Wightman functions Raju, Shrivastava
 Green fns, Thermalization, Chaos, dip-ramp-plateau


DI-D5-P black string in 6D

Quantum Gravity in AdS₂

Bena, Heidmann, Turton

- Deep microstate geometries have long AdS₂ throat
- Limit when length $\rightarrow \infty$
- Disconnect from AdS₃
- Solutions above → asymptotically-AdS₂ Bena, Heidmann, Turton
- Dual to ground states of CFT₁
- All break conformal invariance !

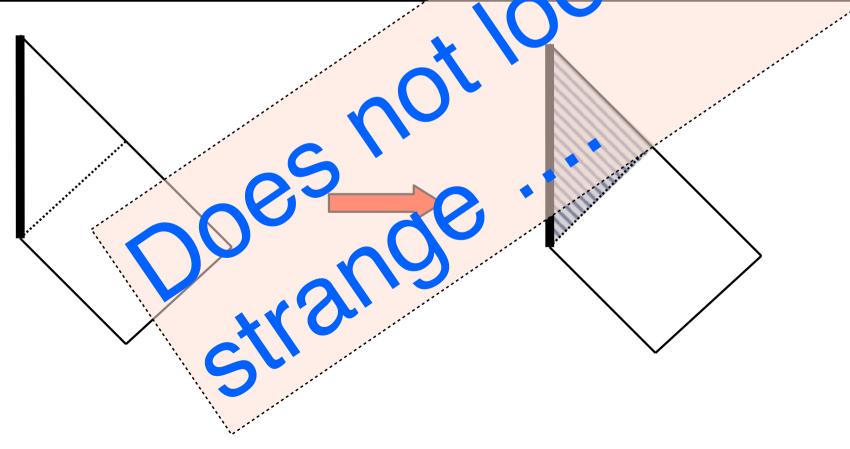

Quantum Gravity in AdS₂

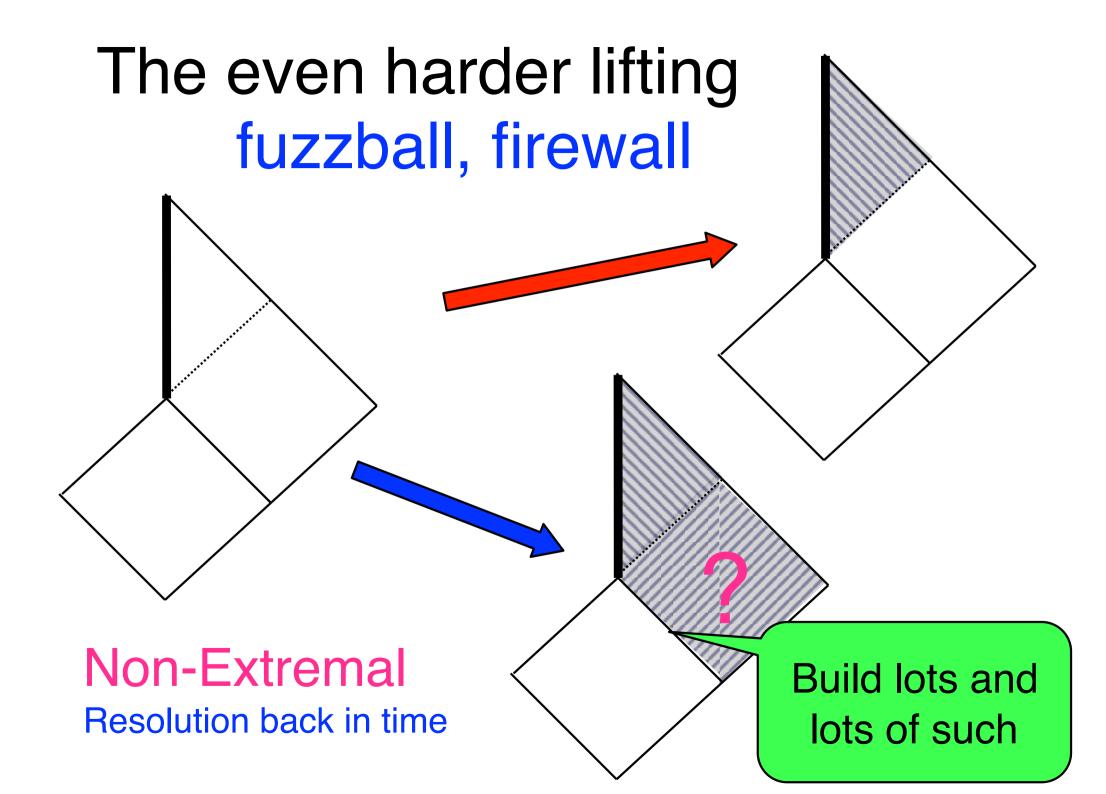
Bena, Heidmann, Turton

- ∃ finite-energy time-dependent excitations → Paulos
- CFT₁ has no conformally-invariant ground state !!!
- Un-capped empty Poincaré AdS₂ is not dual to any ground state of CFT₁ (similar to Poincaré AdS₃)
- All CFT₁ ground states break conf. symmetry
- Tower of finite-energy excitations above each and every one of them
- Claims: CFT₁ has no excitations looking at the wrong ground state
- Work assuming conformally-invariant IR (JT, etc)
 nothing to do with AdS₂/CFT₁ in String Theory

SUSY microstates – the story:

- We have a huge number of them
 - Arbitrary continuous functions of 3 variables
 - Smooth solutions. S ~ $(Q_1Q_5)^{1/2}(Q_p)^{1/4} < (Q_1Q_5Q_p)^{1/2}$
 - Can give black hole entropy Bena, Shigemori, Warner
- Dual to CFT states in typical sector
 - This is where BH states live too
 - Green Function same thermal decay as BH but with Information Recovery Bena, Heidmann, Monten, Warner
 - CFT₁ dual to AdS₂ has no conformally-invariant ground state ! Bena, Heidmann, Turton
 - Hence extremal BH microstates in AdS₂ have no horizon —formal proof of fuzzball proposal for extremal Black Holes !


Goldstein, Katmadas; Bena, Dall'Agata, Giusto, Ruef, Warner


Why destroy horizon ? Low curvature !

- Answer: space-time has singularity:
 - low-mass degrees of freedom
 - change physics on long distances
- Very common in string theory !!!
 - Polchinski-Strassler
 - Klebanov-Strassler
 - Giant Gravitons + LLM
 - D1-D5 system
- Nothing holy about singularity behind horizon Bena, Kuperstein, Warner
- It can be even worse these effects can be significant even without horizon or singularity ! Bena, Wang, Warner; de Boer, El Showk, Messamah, van den Bleeken

BPS Black Hole = Extremal

- This is not so strange
- Horizon in causal future of singularity
- Time-like singularity resolved by (stringy) lowmass modes extending to horizon

Extremely hard to build non-extremal microstates – Coupled nonlinear 2'nd order PDE's do not factorize

Do not pray to the saint who does not help you ! Romanian proverb

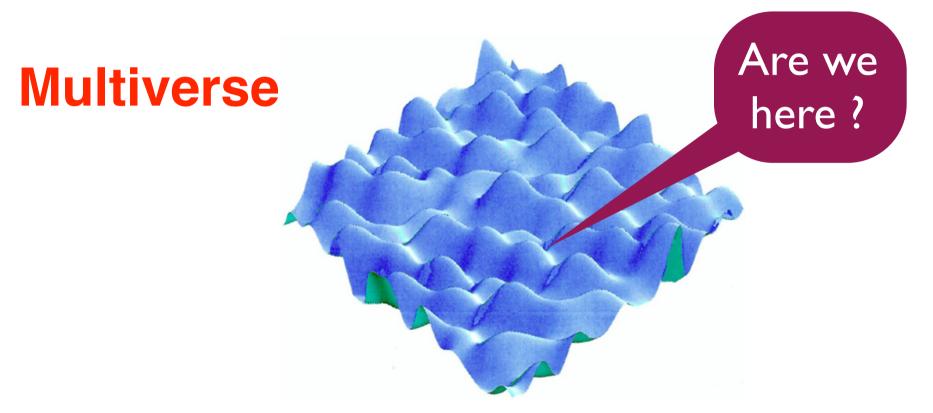
- Idea: perturbative construction near-BPS
- Add antibranes to BPS bubbling sols.

 Kachru, Pearson, Verlinde
- Metastable probes
- Decay to susy minima:
 Brane-Flux annihilation
- Microstates of near-extremal BH

Bena, Puhm, Vercnocke

Exactly as in String Cosmology Flux compactifications $\rightarrow 10^{500}$ vacua with negative cosmological constant: AdS

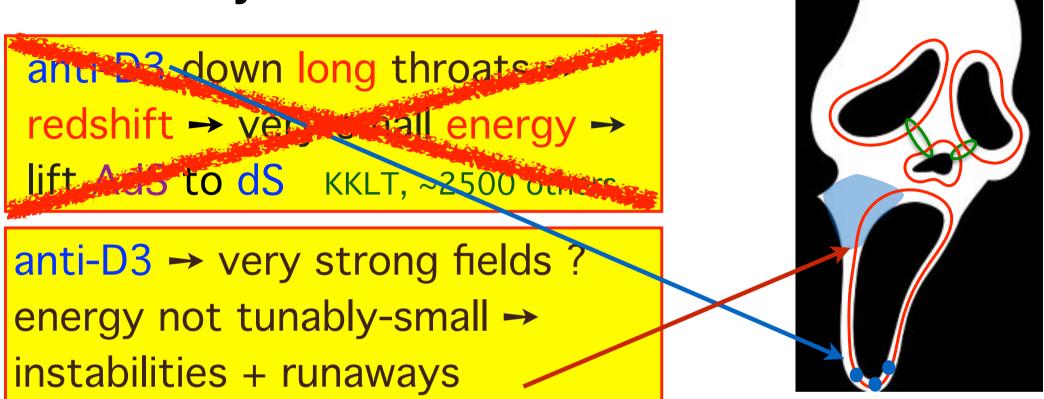
add fluxes + gaugino cond. \rightarrow stabilize moduli \rightarrow AdS


anti-D3 down long throats \rightarrow redshift \rightarrow very-small energy \rightarrow lift AdS to dS KKLT, ~2500 others

Huge fine-tuning in laws of physics: 10⁻¹²⁰ cosmological constant, 10⁻²⁴ electroweak, 10⁻¹⁰ inflation **Symmetry** explanations (susy) increasingly excluded by LHC data

Anthropic explanations if >> 10¹²⁰ universes with all possible laws and constants

String Theory - 10⁵⁰⁰ possible compactifications to 4D



New paradigm: fundamental laws of physics do not come from a deeper underlying theory, but are environmental variables determined by where we happen to be in the multiverse.

Microstates ↔ String

- Antibrane breaks susy and uplifts: $\Lambda > 0$
- Antibrane breaks susy and uplifts: M > Q
- However, life is not that simple:
- Antibranes have tachyons and runaways Bena, Graña, Kuperstein, Massai; Bena, Dudas, Graña, S. Lüst
- Bad for cosmology
- but not for BH !
 - Instabilities in fact expected for non-extremal black hole microstates; JMaRT (+ bubbles) has them Cardoso, Dias, Hovdebo, Myers
 - D1-D5: BPS left-movers + right movers

Why instabilities ?

Runaway mode ↔ jaw becoming longer and longer Bena, Dudaş, Graña, S. Lüst Confirmed by numerically-constructed KS black hole Bena, Buchel, S. Lüst Goes away if D3 charge dissolved in fluxes in the jaw > 500 But total charge on compact space has to be zero !

How to get -500 units of charge ?

- O3 planes at most -32
- D7 planes on 4-cycle S with huge Euler number: $\underline{\chi(S)}$

• F-theory compactifications
~500

$$N_{D3} + \frac{1}{2} \int_Z G \wedge G = \frac{\chi(CY_4)}{24}$$

 $\chi(CY_4) = 6(8 + h^{1,1} + h^{3,1} - h^{2,1})$
 $\exists \chi (CY_4) = 1820$
Need more fluxes to stabilize these moduli

Large negative tadpoles in F-theory

- Argument / conjecture for large X(CY₄):
- Tadpole of fluxes needed to stabilize (3,1) moduli grows like <u>X(CY₄)/12</u>
- Cannot stabilize all moduli in this limit Bena, Blåbäck, Graña, S. Lüst, to appear
- Even before antibranes. K3 x K3 for example
- Similar argument for
 - -(2,1) moduli in CY_3 compactifications
 - fluxes on GH bubbles in microstate geometries

A bit of history

- 2003-now: KKLT + 2500 other articles: de Sitter + inflation in String Theory
- 2009: Saclay group: antibranes are singular perturbatively
- 2011: Singularity is there to all orders
- 2012: Singularity is unphysical no horizon cloaking
- 2014: Tachyon for $g_s N_{antiD3} > 1$
- 2016: Tachyon for $g_s N_{antiD3} \ll 1$
- 2009-16: Europe: Saclay, Leuven, Uppsala, Copenhagen

2018: new bottom-up arguments by Vafa&co against de Sitter

- followed by everybody and their brother

2018: new top-down runaway behavior

Pro-landscape: "intuition-based" Anti-landscape: "equal-sign based"

- Crucial to distinguish between hard calculations and wishful thinking or moving goalposts
- US \$ versus Zimbabwe \$
- pro-KKLT goalposts moved from
 - "all antibranes are OK"
 - " $g_s N_{antiD3} \ll 1$ is OK"
 - "a single anti-D3 is OK"
 - "F-theory saves the day"
- de Sitter & nonextremal microstates not stable !

Implications

- Bad for Landscape
 - Back to drawing board in String Cosmology
 - No controlled construction of de Sitter 😕
 - No string inflation model one can trust
 Swampland ? Quintessence ?
- Non-extremal μ -state geometry instability
 - Feature not a bug Myers&co, Mathur&co
 - BPS moduli space dim. N1N5 Many tachyonic
- Black hole:
 - messy dynamics in phase space of huge dimension

Antibranes = Bread & butter of 2 field:

- String Phenomenology and Cosmology
 - Flux compactifications -> AdS landscape
- Antibranes uplift Λ to get de Sitter, String Inflation Black Hole Information Paradox
 - Need Structure @ Horizon
 - Constructed for extremal (SUSY) black holes
 ⇒ it works !!!
 - Antibranes in bubbling geometries only systematic construction of structure @ non-extremal horizon Bena, Puhm, Vercnocke; Gibbons, Warner
 - Antibrane instability: what physics it implies ?