REVIEW TALK
 $(2+1) \mathrm{d}$ dualities with $\mathcal{N}=2$ supersymmetry

Antonio Amariti

INFN - Sezione di Milano

Pisa, October 18, 2019

Outline

(1) The contribution to the PRIN
(2) Overview of the phases of $(3+1) \mathrm{d}$ SQCD
(3) $(2+1) \mathrm{d}$ tools

4 (The) two main $(2+1) \mathrm{d} \mathcal{N}=2$ dualities
(5) A new duality from compactifications: KK monopoles.
(6) $\mathcal{I}_{S^{3} \times S^{1}} \rightarrow \mathcal{Z}_{S^{3}}$
(7) D-branes: reduction from T-duality.
(8) Constructing the web

Motivations

Exchange of ideas and results between the high-energy and the condensedmatter communities, after the discovery of $(2+1) \mathrm{d}$ bosonization and it generalization to a more general web.

Project

Shed some light on the web of $(2+1)$ d dualities drawing some inspiration from the knowledge of supersymmetric infrared dualities.

Techniques

This research will rely on: Supersymmetry breaking, Localization, Branes, ...

Goals

- Tests and new $2+1$ non-SUSY dualities;
- Generalization to other dimensions.

Today: review of $(2+1)$ d dualities with four supercharges

$$
\text { Q Why } \mathcal{N}=2 ?
$$

A1 Holomorphy protects W from quantum corrections; (for $\mathcal{N}=1$ also time reversal needed).
A2 $(2+1) \mathrm{d} \mathcal{N}=2$ dualities can be derived from $4 \mathrm{~d} \mathcal{N}=1$ by a "sensible" compactification.
A3 There is a large web of dualities (here we are focusing on for $\left.(2+1) d U\left(N_{c}\right) S Q C D\right)$.
This web will be the subject of the talk, we will show how to obtain it using $(3+1)$ d results, dimensional reduction, brane engineering and localization (on the three sphere).

The phase structure of 4d SQCD

The phase structure of 4d SQCD

Tools in $(2+1) \mathrm{d}$

SUSY offers many tools to study $(2+1)$ d models and check conjectured dualities

- Moduli space: HB and CB
- CB coordinates, monopoles and "superpotentials"
- Localization: spheres, indices and topological twist
- Anomalies: gauge vs global, continuous vs discrete (parity)
- CS vs YM action
- Real masses and background symmetries
- Topological symmetry

Multiplets

Vector: $V=\left(A_{\mu}, \lambda_{\alpha}, \sigma, D\right)$ where σ from dim. red. of A_{3} Chiral : $\Phi=(\phi, \psi, F)$

Coulomb branch (CB)

Due to $\langle\sigma\rangle$, combined with the dual photon $\varphi=d * F$ Chiral $\Sigma_{i}=\frac{\sigma_{i}}{g_{3}^{2}}+i \varphi_{i} ; e^{\Sigma_{i}} \mathrm{CB}$ coordinate (UV monopole) Monopole superpotentials: $W \propto e^{f\left(\Sigma_{i}\right)}$, lift some $C B$ directions

Abelian global symmetries

Axial $U(1)_{A}$ (anomalous in $\left.(3+1) \mathrm{d}\right) ; U(1)_{R}$ R-symmetry; topological $U(1) J$ shifting φ.

Chern-Simons (CS) action

$$
S_{C S}=\frac{k}{4 \pi} \int \operatorname{Tr}\left(A \wedge d A-\frac{2}{3} A^{3}-\lambda \tilde{\lambda}+2 \sigma D\right) \quad w / k \in Z
$$

Real masses

Coupling $\left|\sigma_{b c k g}^{i} T_{R}^{i} \phi_{R}\right|^{2},\left\langle\sigma_{b c k g}\right\rangle$ real mass for ϕ

CS and fermions

Integrating out fermions with large real masses generates an effective $\mathrm{CS}: k_{i j}^{\text {eff }}=k_{i j}+\frac{1}{2} \sum_{l} c_{i}\left(\psi_{l}\right) c_{j}\left(\psi_{l}\right) \operatorname{sgn}\left(m_{l}\right)$

Aharony duality '98

ELECTRIC: $3 \mathrm{~d} \mathcal{N}=2 U\left(N_{c}\right)$ SQCD, with $N_{f}\left(>N_{c}\right) \square Q$ and $N_{f} \square \tilde{Q}$;

$$
W=0
$$

MAGNETIC: $3 \mathrm{~d} \mathcal{N}=2 U\left(N_{f}-N_{c}\right)$ SQCD, with $N_{f} \square q$ and $\bar{\square} \tilde{q}, M=Q \tilde{Q}, V_{ \pm}$monopoles of $U\left(N_{c}\right)$ (singlets of the dual phase) and $v_{ \pm}$monopoles of $U\left(N_{f}-N_{c}\right)$

$$
W=M q \tilde{q}+v_{+} v_{+}+v_{-} v_{-}
$$

If $N_{f}=N_{c}=1$ it reduces to mirror symmetry: $U(1)$ with $N_{f}=1$ dual to 3 chirals interacting through $W=X Y Z$

Giveon-Kutasov duality '08

ELECTRIC: 3d $\mathcal{N}=2 U\left(N_{c}\right)_{k}$ SQCD, with $N_{f}+|k|>N_{c}$ and $N_{f} \square Q$ and and $N_{f} \bar{\square} \tilde{Q}$;

$$
W=0
$$

MAGNETIC: $3 \mathrm{~d} \mathcal{N}=2 U\left(N_{f}-N_{c}+|k|\right)_{-k}$ SQCD, with $N_{f} \square q$ and $\bar{\square} \tilde{q}$ and $M=Q \tilde{Q}$

$$
W=M q \tilde{q}
$$

- 4d/3d reduction of $U\left(N_{c}\right)$ SQCD [Aharony, Razamat, Willett, Seiberg '13]
- On S^{1} effective description with $W_{B P S \text {-monopole }}$ and $W_{K K \text {-monopole }}$ (reproduce SUSY vacua at $N_{f}=0$)
- If $N_{f} \neq 0: W_{K K}^{e l e}$ and $W_{K K}^{m a g}$ participate to a new duality:

ARSW duality ' 13

ELECTRIC: $3 \mathrm{~d} \mathcal{N}=2 U\left(N_{c}\right)$ SQCD, with $N_{f}\left(>N_{c}\right) \square Q$ and $N_{f} \bar{\square} \tilde{Q}$

$$
W=W_{K K}^{e l e}=\eta V_{+} V_{-}
$$

with $\eta=e^{-1 /\left(r g_{3}^{2}\right)}=e^{-1 / g_{4}^{2}}=\Lambda_{\text {holo }}^{b}$
MAGNETIC: $3 \mathrm{~d} \mathcal{N}=2 U\left(N_{f}-N_{c}\right)$ SQCD, with $N_{f} \square q$ and $N_{f} \bar{\square} \tilde{q}$

$$
W=M q \tilde{q}+\tilde{\eta} v_{+} v_{-}
$$

- $U(1)_{A}$ broken (as in 4 d) by KK monopoles
- GK and A from this new duality by real mass flows and Higgsing

This procedure can be reproduced by

Localization

Here we focus on the S^{1} reduction of the 4d superconformal index:

$$
\mathcal{I}_{S^{3} \times S_{r}^{1}}^{e l e}=\mathcal{I}_{S^{3} \times S_{r}^{1}}^{m a g} \quad \rightarrow \quad \mathcal{Z}_{S^{3}}^{e l e}=\mathcal{Z}_{S^{3}}^{m a g}
$$

This procedure requires the cancellation of divergent pre-factors. It is not guaranteed to work (e.g. $\mathcal{N}=4 \mathrm{SYM}$ and $S O\left(N_{c}\right)$ dualities).

Localization

$\mathrm{SCI}=\operatorname{Tr}(-1)^{F} e^{-\beta E} p^{J_{1}+\frac{r}{2}} q^{J_{2}+\frac{r}{2}} \prod_{i \in F} \mu_{i}^{q_{i}}$
$I_{U\left(N_{c}\right)}^{\left(N_{f}, N_{f}\right)}=\frac{(p ; p)^{N_{c}}(q ; q)^{N_{c}}}{N_{c}!} \int \prod_{i=1}^{N_{c}} \frac{d z_{i}}{2 \pi i z_{i}} \frac{\prod_{a=1}^{N_{f}} \Gamma_{e}\left((p q)^{\frac{R}{2}} \mu_{a} z_{i}\right) \Gamma_{e}\left((p q)^{\frac{R}{2}} \nu_{a} z_{i}^{-1}\right)}{\prod_{i<j} \Gamma_{e}\left(\left(z_{i} / z_{j}\right)^{ \pm 1}\right)}$
with $(p ; p)=\prod_{a=1}^{\infty}\left(1-p^{a+1}\right)$ and $\Gamma_{e}(x) \equiv \prod_{k, m=0}^{\infty} \frac{1-p^{k+1} q^{k+1} / z}{1-p^{k} q^{m} z}$
Reduction: define
$p=e^{2 \pi i r \omega_{1}}, q=e^{2 \pi i r \omega_{2}}, \mu_{a}=e^{2 \pi i r m_{a}}, \mu_{a}=e^{2 \pi i r n_{a}}, z_{i}=e^{2 \pi i r \sigma_{i}}$
The reduction corresponds to the limit $r \rightarrow 0$ with ω_{i}, m_{a}, n_{a} fixed.

$$
\lim _{r \rightarrow 0} \Gamma_{e}\left((p q)^{\frac{r}{2} \mu_{a} z_{i}} \propto \Gamma_{h}\left(\frac{\omega_{1}+\omega_{2}}{2} R+m_{a}+\sigma_{i}\right)\right.
$$

Subtraction of a divergent term $\propto \operatorname{Tr} \mathrm{R}$ and $\operatorname{Tr} \mathrm{F}$

Localization

The 4 d compact integral is now a non-compact integral over σ

$$
Z_{G ; k}(\lambda ; \vec{\mu})=\frac{1}{|W|} \int \prod_{i=1}^{G} \frac{d \sigma_{i}}{\sqrt{-\omega_{1} \omega_{2}}} e^{\frac{i k \pi \sigma_{i}^{2}}{\omega_{1} \omega_{2}}+\frac{2 \pi i \lambda \sigma_{i}}{\omega_{1} \omega_{2}}} \frac{\prod_{l} \Gamma_{h}\left(\omega \Delta_{l}+\rho_{l}(\sigma)+\widetilde{\rho}_{l}(\mu)\right)}{\prod_{\alpha \in G_{+}} \Gamma_{h}(\pm \alpha(\sigma))}
$$

- Balancing condition: relations between the fugacities $(3+1) \mathrm{d}$ (due to anomalies) or ($2+1$)d real masses (due to $W_{\text {mon }}$);
- FI: real mass for $3 d U(1)_{J}$ (here λ);
- Dualities as integral identities (subtleties due to ∞);
- Real mass flow and CS: $\lim _{x \rightarrow \infty} \Gamma_{h}(x)=e^{i \pi \operatorname{sgn}(x)(x-\omega)^{2}}$;
- Flows to generate new dualities
- Holomorphic mass $\Gamma_{h}(x) \Gamma_{h}(2 \omega-x)=1$

$$
\mathcal{I}_{S^{3} \times S^{1}} \rightarrow \mathcal{Z}_{S^{3}}
$$

Aharony

$$
\begin{aligned}
Z_{U(N) ; 0}(\lambda ; \mu ; \nu) & =\prod_{a, b=1}^{F} \Gamma_{h}\left(\mu_{a}+\nu_{a}\right) Z_{U(F-N) ; 0}(-\lambda ; \omega-\nu ; \omega-\mu) \\
& \times \Gamma_{h}\left(\frac{1}{2}\left(\sum_{a=1}^{F}\left(\mu_{a}+\nu_{a}\right) \pm \lambda\right)+\omega(F-N+1)\right)
\end{aligned}
$$

Giveon-Kutasov

$$
Z_{U(N) ; k}(\lambda ; \mu ; \nu)=e^{\phi} \prod_{a, b=1}^{F} \Gamma_{h}\left(\mu_{a}+\nu_{a}\right) Z_{U(F-N+|k|) ;-k}(-\lambda ; \omega-\nu ; \omega-\mu)
$$

where $\phi=\phi(\omega, \mu, \nu, \lambda, F, N, k)$ collects the (CS) contact terms.

ARSW

$$
Z_{U(N) ; 0}(\lambda ; \mu ; \nu)=e^{\phi} \prod_{a, b=1}^{F} \Gamma_{h}\left(\mu_{a}+\nu_{a}\right) Z_{U(F-N) ; 0}(-\lambda ; \omega-\nu ; \omega-\mu)
$$

with $\sum_{a=1}^{F}\left(\mu_{a}+\nu_{a}\right)=2 \omega(F-N)$ (balancing condition, enforced by $\left.W_{K K}\right)$.

D-branes

Duality due to the brane creation effect during the transition through infinite coupling (i.e. crossing of NS branes)

4d Seiberg duality and branes

SU(N) SQCD
w/ F flavors

Exchange NS and NS'

Separate D4/D6 along [45]

Separate the D6 along [6]

Seiberg dual SQCD after recollecting

D-branes: reduction from T-duality

	0	1	2	3	4	5	6	7	8	9
$N S$	X	X	X	X	X	X				
$N S^{\prime}$	X	X	X	X					X	X
$N_{c} D 4$	X	X	X	X			$[X]$			
$N_{f} D 6$	X	X	X	X				X	X	X

T-duality
\rightarrow
along x_{3}

	0	1	2	3	4	5	6	7	8	9
$N S$	X	X	X	X	X	X				
$N S^{\prime}$	X	X	X	X					X	X
$N_{c} D 3$	X	X	X				$[X]$			
$N_{f} D 5$	X	X	X					X	X	X

For $N_{f}=0(S Y M)$:
$W=W_{\text {mon }}=W_{\text {mon }}^{(B P S)}+W_{\text {mon }}^{(K K)}$
E1: Euclidean D1,
For $N_{f} \neq 0\left(>N_{c}\right) W=W_{\text {mon }}^{(K K)}$

$$
W \propto e^{\frac{\sigma_{i}-\sigma_{i+1}}{g_{3}^{2}}+i\left(\varphi_{i}-\varphi_{i+1}\right)}+\eta e^{\frac{\sigma_{N}-\sigma_{1}}{g_{3}^{2}}+i\left(\varphi_{N}-\varphi_{1}\right)}
$$

with Nambu-Goto (for σ) and Boundary action (for φ)

Results

[A.A., D.Forcella, C.Klare,D. Orlando,S.Reffert '15]
[A.A., C.Klare,D.Orlando,S.Reffert '15]

- ARSW from T-duality + Hanany-Witten transition
- KK monopole (from the affine root)
- Orthogonal and symplectic gauge groups,
- Tensorial matter with power low superpotential
- Brane picture of Aharony duality (monopole superpotential from local mirror symmetry)
- Giveon-Kutasov duality from Aharony duality on the brane picture

ARSW duality

Results

[A.A., D.Forcella, C.Klare,D. Orlando,S.Reffert '15]
[A.A., C.Klare,D.Orlando,S.Reffert '15]

- ARSW from T-duality + Hanany-Witten transition
- KK monopole (from the affine root);
- Orthogonal and symplectic gauge groups;
- Tensorial matter with power low superpotential;
- Brane picture of Aharony duality (monopole superpotential from local mirror symmetry)
- Giveon-Kutasov duality from Aharony duality on the brane picture

Aharony duality (I): ARSW duality with one extra flavor

(3)

(3)

Aharony duality (II): real mass flow and dual Higgsing

(3)

(3)

Aharony duality (III): local mirror symmetry

$$
W=M q \tilde{q}+\hat{M} \hat{q} \hat{q}+e^{\Sigma_{1}-\hat{\Sigma}}+e^{\hat{\Sigma}-\Sigma_{N}}
$$

Last two terms from E1
Local mirror symmetry at $x_{3}=\pi r$
$W=M q \tilde{q}+\hat{M} X+X Y Z+e^{\Sigma_{1}} Y+Z e^{-\Sigma_{N}}$
Integrating out the massive fields
$W=M q \tilde{q}+v_{+} V_{+}+v_{-} V_{-}$
where we used the standard identification

$$
v_{+}=X, \quad v_{-}=Y, \quad V_{+}=e^{\Sigma_{1}}, \quad V_{-}=e^{-\Sigma_{N}}
$$

Results

[A.A., D.Forcella, C.Klare,D. Orlando,S.Reffert '15]
[A.A., C.Klare,D.Orlando,S.Reffert '15]

- ARSW from T-duality + Hanany-Witten transition
- KK monopole (from the affine root);
- Orthogonal and symplectic gauge groups;
- Tensorial matter with power low superpotential;
- Brane picture of Aharony duality (monopole superpotential from local mirror symmetry)
- Giveon-Kutasov duality from Aharony duality on the brane picture

Real mass flow and CS from the branes

Other mechanisms

- Real mass flow generating "chiral" dualities, i.e. $F_{L} \neq F_{R}$, [Benini,Cremonesi,Closset '11]
- Higgs flow from the circle reduction of the Intriligator-Pouliot duality for $\operatorname{USp}\left(2 N_{c}\right)$ to $U\left(N_{c}\right)$: linear monopoles superpotentials, [Benini,Benvenuti,Pasquetti '17]
- Higher monopole powers and classification using systems of D-branes and O-planes (affine and twisted affine compactifications) [A.A,Garozzo, Mekareeya,'18] [A.A,Cassia,Garozzo, Mekareeya,'19]

Note:

Each case has been checked by matching $\mathcal{Z}_{S^{3}}$ and the brane picture, describing the duality, has been found

BBP and branes

Consider 4d IP electric phase on S^{1} $\mathrm{O4}^{+}$splits into the pair $\left(\mathrm{O3}^{+}, \mathrm{O3}^{+}\right)$(Affine case)

Higgs flow: $U S p(2 N) \rightarrow U(N)$
$W_{\text {mon }}=V_{+}+V_{-}$generated by the E1
In general:

	$O 4^{+}$	$O 4^{-}$	$\widetilde{O 4}^{-}$
A	$\left(O 3^{+}, O 3^{+}\right)$	$\left(O 3^{-}, O 3^{-}\right)$	$\left(\widetilde{\left.O 3^{-}, O 3^{-}\right)}\right.$
T	$\left(O 3^{+}, \widetilde{O O^{-}}\right)$	$\left(O 3^{-}, O 3^{+}\right)$	$\left(\widetilde{O 3}-\widetilde{O 3^{-}}\right)$
T	$\left(O 3^{+}, O 3^{-}\right)$	$\left(O 3^{-}, \widetilde{O O^{-}}\right)$	$\left(\widetilde{O O^{-}}, O 3^{+}\right)$

where A stays for affine and T for twisted affine

Summary(I): electric models

Duality	Gauge	Flavor	W
Aharony	$U\left(N_{c}\right)_{0}$	$\left(N_{f}, N_{f}\right)$	$\mathrm{W}=0$
GK	$U\left(N_{c}\right)_{k}$	$\left(N_{f}, N_{f}\right)$	$\mathrm{W}=0$
ARSW	$U\left(N_{c}\right)_{0}$	$\left(N_{f}, N_{f}\right)$	$W=V_{+} V_{-}$
(p, q)-BCC	$U\left(N_{c}\right)_{k \gg \mid N_{f}-N_{\mathrm{a}} / 2}$	$\left(N_{f}, N_{\mathrm{a}}\right)$	$W=0$
$(\mathrm{p}, 0)$-BCC	$U\left(N_{c}\right)_{x / 2}$	$\left(N_{f}, N_{f}-x\right)$	$W=0$
$(\mathrm{p}, \mathrm{q})^{*}-$ BCC	$U\left(N_{c}\right)_{k<\mid N_{f}-N_{\mathrm{a}} / 2}$	$\left(N_{f}, N_{\mathrm{a}}\right)$	$W=0$
BBP	$U\left(N_{c}\right)_{0}$	$\left(N_{f}, N_{f}\right)$	$W=V_{+}+V_{-}$
BBP	$U\left(N_{c}\right)_{0}$	$\left(N_{f}, N_{f}\right)$	$W=V_{+}$
BBP	$U\left(N_{c}\right)_{x / 2}$	$\left(N_{f}, N_{f}-x\right)$	$W=V_{+}$
BBP	$U\left(N_{c}\right)_{0}$	$\left(N_{f}, N_{f}\right)$	$W=V_{+}^{2}+V_{-}^{2}$
AGM	$U\left(N_{c}\right)_{0}$	$\left(N_{f}, N_{f}\right)$	$W=V_{+}^{2}$
AGM	$U\left(N_{c}\right)_{x / 2}$	$\left(N_{f}, N_{f}-x\right)$	$W=V_{+}^{2}$
ACGM	$U\left(N_{c}\right)_{0}$	$\left(N_{f}, N_{f}\right)$	$W=V_{+}^{2}+V_{-}$

Summary(II):magnetic models

Duality	Gauge	W
Aharony	$U\left(N_{f}-N_{c}\right)_{0}$	$W=M q \tilde{q}+v_{+} V_{+}+v_{-} V_{-}$
GK	$U\left(N_{f}-N_{c}+\|k\|\right)_{-k}$	$W=M q \tilde{q}$
ARSW	$U\left(N_{c}\right)_{0}$	$W=M q \tilde{q}+v_{+} v_{-}$
$(\mathrm{p}, \mathrm{q})-$ BCC	$U\left(\frac{N_{f}+N_{a}}{2}-N_{c}+\|k\|\right)_{-k}$	$W=M q \tilde{q}$
(p,0)-BCC	$U\left(N_{f}-N_{c}\right)_{-x / 2}$	$W=M q \tilde{q}+v_{+} V_{+}$
$(\mathrm{p}, \mathrm{q})^{*}-$ BCC	$U\left(\max \left(N_{f}, N_{a}\right)-N_{c}\right)_{-k}$	$W=M q \tilde{q}$
BBP	$U\left(N_{f}-N_{c}-2\right)_{0}$	$W=M q \tilde{q}+v_{+}+v_{-}$
BBP	$U\left(N_{f}-N_{c}-1\right)_{0}$	$W=M q \tilde{q}+v_{+}+v_{-} V_{-}$
BBP	$U\left(N_{f}-N_{c}-1\right)_{-x / 2}$	$W=M q \tilde{q}+v_{+}$
BBP	$U\left(N_{f}-N_{c}\right)_{0}$	$W=M q \tilde{q}+v_{+}^{2}+v_{-}^{2}$
AGM	$U\left(N_{f}-N_{c}\right)_{0}$	$W=M q \tilde{q}+v_{+}^{2}+v_{-} V_{-}$
AGM	$U\left(N_{f}-N_{c}\right)_{-x / 2}$	$W=M q \tilde{q}+v_{+}^{2}$
ACGM	$U\left(N_{f}-N_{c}-1\right)_{0}$	$W=M q \tilde{q}+v_{+}^{2}+v_{-}$

Conclusions

- Rich web of dualities for $U\left(N_{c}\right)$ SQCD thanks to dimensional reduction, real mass flows, Higgs flows and monopole superpotentials;
- The web can in principle be enlarged (similar discussions hold in the non-supersymmetric case);
- Higher powers for the monopoles are forbidden (in absence of extra charged matter fields);
- Fractional powers are not forbidden. Do they have any field theory interpretation?
- Generalizations to $\operatorname{SU}\left(N_{c}\right), U S p\left(2 N_{c}\right)$ and $S O\left(N_{c}\right)$, quivers and tensorial matter.

