REVIEW TALK (2+1)d dualities with $\mathcal{N}=2$ supersymmetry

Antonio Amariti

INFN - Sezione di Milano

Pisa, October 18, 2019

• • = • • = •

Outline

- 1 The contribution to the PRIN
- 2 Overview of the phases of (3+1)d SQCD
- 3 (2+1)d tools
- (The) two main $(2+1)d \mathcal{N} = 2$ dualities
- 6 A new duality from compactifications: KK monopoles.
- D-branes: reduction from T-duality.
- 8 Constructing the web

イロト 不得 トイヨト イヨト 二日

Motivations

Exchange of ideas and results between the **high-energy** and the **condensedmatter** communities, after the *discovery* of (2+1)d bosonization and it generalization to a more general **web**.

Project

Shed some light on the **web** of (2+1)d dualities drawing some inspiration from the knowledge of supersymmetric infrared dualities.

Techniques

This research will rely on: Supersymmetry breaking, Localization, Branes, ...

Goals

- Tests and new 2+1 non-SUSY dualities;
- Generalization to other dimensions.

Today: review of (2+1)d dualities with four supercharges

Q Why $\mathcal{N} = 2$?

- A1 Holomorphy protects W from quantum corrections; (for $\mathcal{N}=1$ also time reversal needed).
- A2 (2+1)d $\mathcal{N}=2$ dualities can be derived from 4d $\mathcal{N}=1$ by a "sensible" compactification.
- A3 There is a large web of dualities (here we are focusing on for $(2+1)d U(N_c)$ SQCD).

This web will be the subject of the talk, we will show how to obtain it using (3+1)d results, dimensional reduction, brane engineering and localization (on the three sphere).

イロト イポト イヨト イヨト

Overview of the phases of (3+1)d SQCD

Tools in (2+1)d

SUSY offers many tools to study (2+1)d models and check conjectured dualities

- Moduli space: HB and CB
- CB coordinates, monopoles and "superpotentials"
- Localization: spheres, indices and topological twist
- Anomalies: gauge vs global, continuous vs discrete (parity)
- CS vs YM action
- Real masses and background symmetries
- Topological symmetry

- E > - E >

Multiplets

Vector: $V = (A_{\mu}, \lambda_{\alpha}, \sigma, D)$ where σ from dim. red. of A_3 Chiral : $\Phi = (\phi, \psi, F)$

Coulomb branch (CB)

Due to $\langle \sigma \rangle$, combined with the dual photon $\varphi = d * F$ Chiral $\Sigma_i = \frac{\sigma_i}{g_3^2} + i\varphi_i$; e^{Σ_i} CB coordinate (UV monopole) Monopole superpotentials: $W \propto e^{f(\Sigma_i)}$, lift some CB directions

Abelian global symmetries

Axial $U(1)_A$ (anomalous in (3+1)d); $U(1)_R$ R-symmetry; topological $U(1)_J$ shifting φ .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Chern-Simons (CS) action

$$S_{CS} = rac{k}{4\pi} \int Tr(A \wedge dA - rac{2}{3}A^3 - \lambda \tilde{\lambda} + 2\sigma D) \quad w/k \in Z$$

Real masses

Coupling
$$|\sigma_{bckg}^{i}T_{R}^{i}\phi_{R}|^{2}$$
, $\langle\sigma_{bckg}\rangle$ real mass for ϕ

CS and fermions

Integrating out fermions with large real masses generates an effective CS: $k_{ij}^{eff} = k_{ij} + \frac{1}{2} \sum_{I} c_i(\psi_I) c_j(\psi_I) sgn(m_I)$

Aharony duality '98

ELECTRIC: 3d $\mathcal{N} = 2 \ U(N_c)$ SQCD, with $N_f(>N_c) \Box Q$ and $N_f \overline{\Box} \tilde{Q}$;

W = 0

MAGNETIC: 3d $\mathcal{N} = 2 U(N_f - N_c)$ SQCD, with $N_f \Box q$ and $\overline{\Box} \tilde{q}$, $M = Q\tilde{Q}$, V_{\pm} monopoles of $U(N_c)$ (singlets of the dual phase) and v_{\pm} monopoles of $U(N_f - N_c)$

$$W = Mq\tilde{q} + v_+V_+ + v_-V_-$$

If $N_f = N_c = 1$ it reduces to mirror symmetry: U(1) with $N_f = 1$ dual to 3 chirals interacting through W = XYZ

Giveon-Kutasov duality '08

ELECTRIC: 3d $\mathcal{N} = 2 U(N_c)_k$ SQCD, with $N_f + |k| > N_c$ and $N_f \square Q$ and and $N_f \square \tilde{Q}$;

W = 0

MAGNETIC: 3d $\mathcal{N} = 2 U(N_f - N_c + |k|)_{-k}$ SQCD, with $N_f \Box q$ and $\overline{\Box} \tilde{q}$ and $M = Q\tilde{Q}$

 $W = Mq\tilde{q}$

3

- 4d/3d reduction of U(N_c) SQCD [Aharony, Razamat, Willett, Seiberg '13]
- On S^1 effective description with $W_{BPS-monopole}$ and $W_{KK-monopole}$ (reproduce SUSY vacua at $N_f = 0$)
- If $N_f \neq 0$: W_{KK}^{ele} and W_{KK}^{mag} participate to a new duality:

ARSW duality '13

ELECTRIC: 3d $\mathcal{N} = 2 U(N_c)$ SQCD, with $N_f(>N_c) \Box Q$ and $N_f \overline{\Box} \tilde{Q}$

 $W = W_{KK}^{ele} = \eta V_+ V_-$

with $\eta = e^{-1/(rg_3^2)} = e^{-1/g_4^2} = \Lambda_{holo}^b$ **MAGNETIC:** 3d $\mathcal{N} = 2 U(N_f - N_c)$ SQCD, with $N_f \Box q$ and $N_f \overline{\Box} \tilde{q}$

 $W = Mq\tilde{q} + \tilde{\eta}v_+v_-$

- $U(1)_A$ broken (as in 4d) by KK monopoles
- GK and A from this new duality by real mass flows and Higgsing

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

This procedure can be reproduced by

Localization

Here we focus on the S^1 reduction of the 4d superconformal index:

$$\mathcal{I}^{ele}_{S^3 \times S^1_r} = \mathcal{I}^{mag}_{S^3 \times S^1_r} \quad \rightarrow \quad \mathcal{Z}^{ele}_{S^3} = \mathcal{Z}^{mag}_{S^3} \\ r \rightarrow 0$$

This procedure requires the cancellation of divergent pre-factors. It is not guaranteed to work (e.g. $\mathcal{N} = 4$ SYM and $SO(N_c)$ dualities).

Localization

$$\mathsf{SCI} = Tr(-1)^F e^{-\beta E} p^{J_1 + \frac{r}{2}} q^{J_2 + \frac{r}{2}} \prod_{i \in F} \mu_i^{q_i}$$

$$I_{U(N_{c})}^{(N_{f},N_{f})} = \frac{(p;p)^{N_{c}}(q;q)^{N_{c}}}{N_{c}!} \int \prod_{i=1}^{N_{c}} \frac{dz_{i}}{2\pi i z_{i}} \frac{\prod_{a=1}^{N_{f}} \Gamma_{e}((pq)^{\frac{R}{2}} \mu_{a} z_{i}) \Gamma_{e}((pq)^{\frac{R}{2}} \nu_{a} z_{i}^{-1})}{\prod_{i < j} \Gamma_{e}((z_{i}/z_{j})^{\pm 1})}$$

with
$$(p; p) = \prod_{a=1}^{\infty} (1 - p^{a+1})$$
 and $\Gamma_e(x) \equiv \prod_{k,m=0}^{\infty} \frac{1 - p^{k+1}q^{k+1}/z}{1 - p^k q^m z}$

Reduction: define $p = e^{2\pi i r \omega_1}$, $q = e^{2\pi i r \omega_2}$, $\mu_a = e^{2\pi i r m_a}$, $\mu_a = e^{2\pi i r m_a}$, $z_i = e^{2\pi i r \sigma_i}$ The reduction corresponds to the limit $r \to 0$ with ω_i , m_a , n_a fixed.

$$\lim_{r\to 0} \Gamma_e((pq)^{\frac{r}{2}\mu_a z_i} \propto \Gamma_h(\frac{\omega_1 + \omega_2}{2}R + m_a + \sigma_i)$$

Subtraction of a divergent term \propto Tr R and Tr F

Localization

The 4d compact integral is now a non-compact integral over σ

$$Z_{G;k}(\lambda;\vec{\mu}) = \frac{1}{|W|} \int \prod_{i=1}^{G} \frac{d\sigma_i}{\sqrt{-\omega_1\omega_2}} e^{\frac{ik\pi\sigma_i^2}{\omega_1\omega_2} + \frac{2\pi i\lambda\sigma_i}{\omega_1\omega_2}} \frac{\prod_I \Gamma_h(\omega\Delta_I + \rho_I(\sigma) + \widetilde{\rho}_I(\mu))}{\prod_{\alpha \in G_+} \Gamma_h(\pm \alpha(\sigma))}$$

- Balancing condition: relations between the fugacities (3+1)d (due to anomalies) or (2+1)d real masses (due to W_{mon});
- FI: real mass for 3d $U(1)_J$ (here λ);
- Dualities as integral identities (subtleties due to ∞);
- Real mass flow and CS: $\lim_{x\to\infty} \Gamma_h(x) = e^{i\pi sgn(x)(x-\omega)^2}$;
- Flows to generate new dualities
- Holomorphic mass $\Gamma_h(x)\Gamma_h(2\omega x) = 1$

< ロ > < 同 > < 回 > < 回 > < 回 > <

$\mathcal{I}_{S^3\times S^1}\to \mathcal{Z}_{S^3}$

Aharony

$$Z_{U(N);0}(\lambda;\mu;\nu) = \prod_{a,b=1}^{F} \Gamma_{h}(\mu_{a}+\nu_{a}) Z_{U(F-N);0}(-\lambda;\omega-\nu;\omega-\mu)$$
$$\times \Gamma_{h}\left(\frac{1}{2}(\sum_{a=1}^{F}(\mu_{a}+\nu_{a})\pm\lambda)+\omega(F-N+1)\right)$$

Giveon-Kutasov

$$Z_{U(N);k}(\lambda;\mu;\nu) = e^{\phi} \prod_{a,b=1}^{F} \Gamma_{h}(\mu_{a}+\nu_{a}) Z_{U(F-N+|k|);-k}(-\lambda;\omega-\nu;\omega-\mu)$$

where $\phi = \phi(\omega, \mu, \nu, \lambda, F, N, k)$ collects the (CS) contact terms.

ARSW

$$Z_{U(N);0}(\lambda;\mu;\nu) = e^{\phi} \prod_{a,b=1}^{F} \Gamma_{b}(\mu_{a}+\nu_{a}) Z_{U(F-N);0}(-\lambda;\omega-\nu;\omega-\mu)$$

with $\sum_{a=1}^{F} (\mu_a + \nu_a) = 2\omega(F - N)$ (balancing condition, enforced by W_{KK}).

Antonio Amariti (INFN)

イロン 人通 と イヨン イヨン

D-branes

Duality due to the brane creation effect during the *transition through infinite coupling* (i.e. crossing of NS branes)

Antonio Amariti (INFN)

D-branes: reduction from T-duality.

D-branes: reduction from T-duality

Antonio Amariti (INFN)

Results

[A.A., D.Forcella,C.Klare,D.Orlando,S.Reffert '15] [A.A.,C.Klare,D.Orlando,S.Reffert '15]

- ARSW from T-duality + Hanany-Witten transition
 - KK monopole (from the affine root)
 - Orthogonal and symplectic gauge groups,
 - Tensorial matter with power low superpotential
- Brane picture of Aharony duality (monopole superpotential from *local* mirror symmetry)
- Giveon-Kutasov duality from Aharony duality on the brane picture

通 ト イヨ ト イヨト

Results

[A.A., D.Forcella,C.Klare,D.Orlando,S.Reffert '15] [A.A.,C.Klare,D.Orlando,S.Reffert '15]

- ARSW from T-duality + Hanany-Witten transition
 - KK monopole (from the affine root);
 - Orthogonal and symplectic gauge groups;
 - Tensorial matter with power low superpotential;
- Brane picture of Aharony duality (monopole superpotential from *local* mirror symmetry)
- Giveon-Kutasov duality from Aharony duality on the brane picture

- 4 週 ト - 4 三 ト - 4 三 ト

D-branes: reduction from T-duality.

Aharony duality (I): ARSW duality with one extra flavor

Antonio Amariti (INFN)

D-branes: reduction from T-duality.

Aharony duality (II): real mass flow and dual Higgsing

Antonio Amariti (INFN)

Aharony duality (III): local mirror symmetry

$$\begin{split} W &= Mq\tilde{q} + \hat{M}\hat{q}\hat{q} + e^{\Sigma_1 - \hat{\Sigma}} + e^{\hat{\Sigma} - \Sigma_N} \\ \text{Last two terms from } E1 \\ \text{Local mirror symmetry at } x_3 &= \pi r \\ W &= Mq\tilde{q} + \hat{M}X + XYZ + e^{\Sigma_1}Y + Ze^{-\Sigma_N} \\ \text{Integrating out the massive fields} \\ W &= Mq\tilde{q} + v_+V_+ + v_-V_- \end{split}$$

イロト 人間ト イヨト イヨト

where we used the standard identification

$$v_{+} = X, \quad v_{-} = Y, \quad V_{+} = e^{\Sigma_{1}}, \quad V_{-} = e^{-\Sigma_{N}}$$

Results

[A.A., D.Forcella,C.Klare,D.Orlando,S.Reffert '15] [A.A.,C.Klare,D.Orlando,S.Reffert '15]

- ARSW from T-duality + Hanany-Witten transition
 - KK monopole (from the affine root);
 - Orthogonal and symplectic gauge groups;
 - Tensorial matter with power low superpotential;
- Brane picture of Aharony duality (monopole superpotential from *local* mirror symmetry)
- Giveon-Kutasov duality from Aharony duality on the brane picture

- 4 週 ト - 4 三 ト - 4 三 ト

D-branes: reduction from T-duality.

Real mass flow and CS from the branes

Other mechanisms

- Real mass flow generating "chiral" dualities, i.e. $F_L \neq F_R$, [Benini,Cremonesi,Closset '11]
- Higgs flow from the circle reduction of the Intriligator-Pouliot duality for USp(2N_c) to U(N_c): linear monopoles superpotentials, [Benini,Benvenuti,Pasquetti '17]
- Higher monopole powers and classification using systems of D-branes and O-planes (affine and twisted affine compactifications) [A.A,Garozzo, Mekareeya,'18] [A.A,Cassia,Garozzo, Mekareeya,'19]

Note:

Each case has been checked by matching \mathcal{Z}_{S^3} and the brane picture, describing the duality, has been found

イロト 不得下 イヨト イヨト

Summary(I): electric models

Duality	Gauge	Flavor	W
Aharony	$U(N_c)_0$	(N_f, N_f)	W=0
GK	$U(N_c)_k$	(N_f, N_f)	W=0
ARSW	$U(N_c)_0$	(N_f, N_f)	$W = V_+ V$
(p,q)-BCC	$U(N_c)_{k> N_f-N_a /2}$	(N_f, N_a)	W = 0
(p,0)-BCC	$U(N_c)_{x/2}$	$(N_f, N_f - x)$	W = 0
(p,q)*-BCC	$U(N_c)_{k< N_f-N_a /2}$	(N_f, N_a)	W = 0
BBP	$U(N_c)_0$	(N_f, N_f)	$W = V_+ + V$
BBP	$U(N_c)_0$	(N_f, N_f)	$W = V_+$
BBP	$U(N_c)_{x/2}$	$(N_f, N_f - x)$	$W = V_+$
BBP	$U(N_c)_0$	(N_f, N_f)	$W=V_+^2+V^2$
AGM	$U(N_c)_0$	(N_f, N_f)	$W = V_+^2$
AGM	$U(N_c)_{x/2}$	$(N_f, N_f - x)$	$W = V_+^2$
ACGM	$U(N_c)_0$	(N_f, N_f)	$W = V_+^2 + V$

Summary(II):magnetic models

Duality	Gauge	W
Aharony	$U(N_f - N_c)_0$	$W = Mq\tilde{q} + v_+V_+ + vV$
GK	$U(N_f - N_c + k)_{-k}$	W=Mq ilde q
ARSW	$U(N_c)_0$	$W=Mq ilde{q}+v_+v$
(p,q)-BCC	$U(\frac{N_f+N_a}{2}-N_c+ k)_{-k}$	W=Mq ilde q
(p,0)-BCC	$U(N_f - N_c)_{-x/2}$	$W=Mq ilde{q}+ extsf{v}_+V_+$
(p,q)*-BCC	$U(max(N_f, N_a) - N_c)_{-k}$	W=Mq ilde q
BBP	$U(N_f - N_c - 2)_0$	$W=Mq ilde{q}+ extsf{v}_++ extsf{v}$
BBP	$U(N_f - N_c - 1)_0$	$W = Mq ilde{q} + extsf{v}_+ + extsf{v} V$
BBP	$U(N_f - N_c - 1)_{-x/2}$	${\cal W}=Mq ilde q+{f v}_+$
BBP	$U(N_f - N_c)_0$	$W=Mq ilde{q}+ extsf{v}_{+}^{2}+ extsf{v}_{-}^{2}$
AGM	$U(N_f - N_c)_0$	$W=Mq ilde{q}+v_+^2+vV$
AGM	$U(N_f - N_c)_{-x/2}$	${\cal W}=Mq ilde q+{ m v}_+^2$
ACGM	$U(N_f - N_c - 1)_0$	$W = Mq \widetilde{q} + v_+^2 + v$

3

・ロト ・聞 ト ・ ヨト ・ ヨト …

Conclusions

- Rich web of dualities for U(N_c) SQCD thanks to dimensional reduction, real mass flows, Higgs flows and monopole superpotentials;
- The web can in principle be enlarged (similar discussions hold in the non-supersymmetric case);
- Higher powers for the monopoles are forbidden (in absence of extra charged matter fields);
- Fractional powers are not forbidden. Do they have any field theory interpretation?
- Generalizations to $SU(N_c)$, $USp(2N_c)$ and $SO(N_c)$, quivers and tensorial matter.

- 4 同 6 4 日 6 4 日 6