String theory compactifications with sources

Alessandro Tomasiello
PRIN Kickoff Meeting, SNS Pisa, 19.10.2019

Introduction

For de Sitter solutions in string theory, we need to break supersymmetry, and to consider...

- higher-derivative operators
- orientifold-planes (O-planes)
- Most activity: 4d effective actions
furious debate!
e.g. $(\text { Riemann })^{k}$
[Gibbons '84; de Wit, Smit, Hari Dass '87, Maldacena, Nuñez 'oo]
[Bianchi, Pradisi, Sagnotti '91...]
[Kachru, Kallosh, Linde, Trivedi '03, Silverstein 'O7... huge list]
[Bena, Graña, Halmagyi 'o9, Banks 'ı2, Sethi 'ı7...]
- Finding solutions directly in Iod? still a challenge:
- O-planes back-react on geometry and create singularities
- when higher-derivatives get involved, they do so all at once
- it has been hard to find examples; often people have resorted to 'smearing'

[Acharya, Benini, Valandro 'o5,
Graña, Minasian, Petrini, AT 'o6,
Caviezel, Koerber, Körs, Lüst, Wrase, Zagermann 'o8,
Andriot, Goi, Minasian, Petrini 'ıо...]

However, O-planes should sit at fixed loci of involutions
\Rightarrow they shouldn't be smeared by definition.

- several people tried to understand criteria for un-smearing
[Dong, Horn, Silverstein, Torroba 'ıo; Blåbäck, Danielsson, Junghans, Van Riet '14...]
- But: solutions with unsmeared O-plane singularities
have appeared in the last few years
for supersymmetric AdS

Maybe time to try again for dS ?

Plan

- some explicit solutions
- Review: Localized sources in AdS
- how to find them
- why one should believe them
- Ideas for supersymmetry breaking
- some simple de Sitter models

AdS with sources

- Sometimes solutions with sources
come from near-horizon limits

$$
\operatorname{AdS}_{6} \times\left(\text { top. } . S^{4}\right)
$$

- Unclear if all AdS are near-horizon limits
- Intersecting brane solutions are rare anyway
- Better strategy: work out boundary conditions corresponding to various sources
- Sources create singularities where supergravity breaks down

backreaction on flat space:	$d s_{10}^{2}=H^{0, \ldots, p} H^{-1 / 2} d s_{\\|}^{2}+H^{1 / 2} d s_{\perp}^{2}$	$e^{\phi}=g_{s} H^{(3-p) / 4}$
	$\underbrace{}_{\text {harmonic function in } \mathbb{R}_{\perp}^{9-p}}$	$d s_{\perp}^{2}=d r^{2}+r^{2} d s_{S^{8-p}}^{2}$

- supergravity artifacts: they should be resolved in appropriate duality frame

D-branes
O-planes
[$\mathrm{O} p_{-}$: tension=charge $\left.=-2^{p-5}\right]$

- Example: AdS $_{7}$ in IIA. All solutions:

$$
\begin{gathered}
\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right) \\
\text { interval }
\end{gathered}
$$

$$
\dddot{\alpha}=F_{0} \quad \leadsto \quad \alpha \text { piecewise cubic }
$$

$$
\begin{aligned}
& e^{\phi}=2^{5 / 4} \pi^{5 / 2} 3^{4} \frac{(-\alpha / \ddot{\alpha})^{3 / 4}}{\sqrt{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}} \\
& B=\pi\left(-z+\frac{\alpha \dot{\alpha}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^{2}} \\
& F_{2}=\left(\frac{\ddot{\alpha}}{162 \pi^{2}}+\frac{\pi F_{0} \alpha \dot{\alpha}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^{2}}
\end{aligned}
$$

- At endpoint, smoothness: S^{2} should shrink, $\frac{\alpha}{\ddot{\alpha}}$ finite $\quad \triangleleft \quad \alpha \rightarrow 0, \ddot{\alpha} \rightarrow 0$
- When F_{0} jumps \Rightarrow D8

what happens with other boundary conditions?
compare locally with

$$
\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)
$$

$$
d s_{10}^{2}=H^{-1 / 2} d s_{\|}^{2}+H^{1 / 2} d s_{\perp}^{2}
$$

- $\alpha \rightarrow 0$

$$
d s^{2} \sim z^{1 / 2} d s_{\mathrm{AdS}_{7}}^{2}+z^{-1 / 2}\left(\frac{\text { transverse } \mathbb{R}^{3}}{\left(d z^{2}+z^{2} d s_{S^{2}}^{2}\right.}\right)
$$

- Other interesting boundary conditions:

$\alpha\left(z_{0}\right)$	$\dot{\alpha}\left(z_{0}\right)$	$\ddot{\alpha}\left(z_{0}\right)$	
0	$\neq 0$	$\neq 0$	D 6
$\neq 0$	$\neq 0$	0	O 6
0	$\neq 0$	0	regular point
$\neq 0$	0	0	O8

- Why should we believe this? Holographic checks:

Examples

Other examples

$$
\begin{array}{cc}
S^{2} \times S^{2} \hookrightarrow & M_{6} \\
\text { fibred } & \downarrow
\end{array}
$$

- $\mathrm{AdS}_{4} \times M_{6}$ in IIB with $\mathcal{N}=4$ supersymmetry
no O-planes so far
[Assel, Bachas, Estes, Gomis 'in]
building on [d'Hoker, Estes, Gutperle 'o7]

- Similar $\mathrm{AdS}_{6} \times M_{4}$
[d'Hoker, Gutperle, Karch, Uhlemann '16]
also no O-planes. Possible extension with 7 -branes?

- AdS_{4} in IIA

$$
\left(\operatorname{top} . S^{3}\right) \rightarrow H_{3}, S^{3}
$$

sources:
[Rota, AT'15; Passias, Prins, AT 'ı8;
Bah, Passias, Weck ' 18]
D8, D6, O8, O6 $\quad\left(\right.$ top. $\left.S^{2}\right) \rightarrow \mathrm{KE}_{4}, \Sigma_{g} \times \Sigma_{g^{\prime}}$
O8

- AdS_{3} in F-theory

Supersymmetry breaking

- Possible way of breaking susy: consistent truncations once rare; now common, although perhaps general theory still lacking
- For ex: every AdS_{7} solution has a non-susy 'evil twin’
established via consistent truncation: some small changes
$\frac{1}{\pi \sqrt{\boxed{~}}} d s^{2}=\sqrt[12]{-\frac{\alpha}{\bar{\alpha}}} d s_{\text {AS }_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-\mathbf{Z} \alpha \ddot{\alpha}^{2}} d s_{S^{2}}^{2}\right)$
- Most are unstable part of the KK spectrum via 7d trick

NS5 'bubbles'

$$
e^{\phi}=2^{\ddot{W}} \pi^{5 / 2} 3^{4} \frac{(-\alpha / \ddot{\alpha})^{3 / 4}}{\sqrt{\dot{\alpha}^{2}-\mathbf{\alpha} \alpha \ddot{\alpha}}}
$$

pert. instability for all solutions with
D8s on top of each other
non-pert. instability for all solutions with a massless region

- More general strategy?

let's start from an easy class:

$$
\begin{align*}
& \text { eg. } \mathrm{Mink}_{6} \times M_{4} \\
& d_{H}\left(e^{3 A-\phi} \Phi_{+}\right)=0 \\
& d_{H}\left(e^{2 A-\phi} \operatorname{Re} \Phi_{-}\right)=0 \\
& d_{H}\left(e^{4 A-\phi} \operatorname{Im} \Phi_{-}\right)=e^{4 A} \star \lambda(F) \\
& \text { [Lüst, Patalong, Tsimpis 'ıo; } \\
& \text { Graña, Minasian, Petrini, AT '051 } \\
& d_{H}\left(e^{3 A-\phi} \Phi_{+}\right)=0 \\
& d_{H}\left(e^{2 A-\phi} \operatorname{Re} \Phi_{-}\right)=c e^{8 A-2 \phi} \operatorname{vol}_{M_{4}} \\
& d_{H}\left(e^{4 A-\phi} \operatorname{Im} \Phi_{-}\right)=e^{4 A} \star \lambda(F) \\
& \text { [Imamura 'or; Janssen, Meessen, Ortin '99] } \\
& d s^{2}=S^{-1 / 2} d s_{\text {Mink }_{6}}^{2}+K\left(S^{-1 / 2} d z^{2}+S^{1 / 2} d s_{\mathbb{R}^{3}}^{2}\right) \\
& \text { [motivated by NS5-D6-D8] } \\
& \Delta_{3} S+\frac{1}{2} \partial_{z}^{2} S^{2}=0 \\
& K=-\frac{4}{F_{0}} \partial_{z} S \tag{ᄀ}\\
& \supset \quad \Delta_{3} S+\frac{1}{2} \partial_{z}^{2} S^{2}+c z \partial_{z}^{2} S=0 \\
& K=-\frac{4}{F_{0}} \partial_{z} S \\
& S=e^{-4 A}+c z
\end{align*}
$$

we checked that this small modification works in several other classes
similar in spirit to adding primitive part to G_{3} in conf. CY

dS with 08-planes

- Simplest model [Corrdova, De Luna, $\left.1 T^{1} ; s\right]$

$$
\begin{array}{r}
d s^{2}=e^{2 W(z)} d s_{\mathrm{dS}_{4}}^{2}+e^{-2 W(z)}\left(d z^{2}+e^{2 \lambda(z)} d s_{M_{5}}^{2}\right) \\
\text { compact hyperbolic }
\end{array}
$$

Boundary condition at $\mathrm{O} 8+$

$$
\left.e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=1 \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}
$$

Minkowski: [Bianchi, Pradisi, Sagnotti '91, Dabholkar, Park '96, Witten '97, Aharony, Komargodski, Patir '07]
see also [Silverstein, Strings 2013 talk]
Numerical evolution:
we manage to reach

$$
e^{f_{i}} \sim\left|z-z_{0}\right|^{-1 / 4}
$$

same as O8_ in flat space
[even the coefficients work]

- Rescaling symmetry:

$$
g_{M N} \rightarrow e^{2 c} g_{M N}, \phi \rightarrow \phi-c
$$

it makes strong-coupling region small, but it doesn't make it disappear.

- In the O8_ region stringy corrections become dominant $\ldots \gg e^{-2 \phi} R^{4} \gg e^{-2 \phi} R$
supergravity action is least important term;
ideally in this region we'd switch to another duality frame.
Full string theory should then fix c
- Hope that this solution is sensible comes from similarity with flat-space O8_ (which we know to exist in string theory)

dS with O8s and O6s

- We also tried: $\mathrm{O}_{+}-{ }^{-} \mathbf{O}_{-}$

[Córdova, De Luca, AT, to appear]

$$
d s^{2}=e^{2 W} d s_{d S_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda_{3}} d s_{M_{3}}^{2}+e^{2 \lambda_{2}} d s_{S^{2}}^{2}\right) \quad \begin{aligned}
H & =h_{1} d z \wedge \operatorname{vol}_{2}+h_{2} \operatorname{vol}_{3} \\
F_{2} & =f_{2} \operatorname{vol}_{2} \\
F_{4} & =f_{41} \operatorname{vol}_{3} \wedge d z+f_{42} \operatorname{vol}_{4} \\
F_{0} & \neq 0
\end{aligned}
$$

- we already know one such solution for $\Lambda<0$:

- we slowly modified it numerically, bringing Λ up

$$
d s^{2}=e^{2 W} d s_{d S_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda_{3}} d s_{M_{3}}^{2}+e^{2 \lambda_{2}} d s_{S^{2}}^{2}\right)
$$

[functions rescaled for clarity]

Conclusions

- A lot of progress in AdS solutions
- often localized O-plane sources are possible - holography works even in their presence
- sometimes non-supersymmetric
- Time to look for de Sitter
- Using numerics, we find dS solutions with O8-planes
in relatively simple setup
- Also O8-O6 solutions
- There are regions where supergravity breaks down.

Inevitable! If you want solutions with O-planes.
We better learn how to deal with them.

