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Introduction
For de Sitter solutions in string theory, we need to break supersymmetry, and to consider… 

[Gibbons ’84; de Wit, Smit, Hari Dass ’87, Maldacena, Nuñez ’00]
[Bianchi, Pradisi, Sagnotti ’91…]

• orientifold-planes (O-planes)

• higher-derivative operators e.g. (Riemann)k

•Finding solutions directly in 10d? still a challenge:

• O-planes back-react on geometry and create singularities

• when higher-derivatives get involved, they do so all at once

•Most activity: 4d effective actions

furious debate!

[Kachru, Kallosh, Linde, Trivedi ’03, Silverstein ’07… huge list]

[Bena, Graña, Halmagyi ’09, Banks ’12, Sethi ’17…]



• several people tried to understand criteria for un-smearing
[Dong, Horn, Silverstein, Torroba ’10;

Blåbäck, Danielsson, Junghans, Van Riet ’14…]

[Acharya, Benini, Valandro ’05,
Graña, Minasian, Petrini, AT ’06,

Caviezel, Koerber, Körs, Lüst, Wrase, Zagermann ’08,
Andriot, Goi, Minasian, Petrini ’10…]

• it has been hard to find examples; often people have resorted to ‘smearing’

However, O-planes should sit at fixed loci of involutions

localized smeared

they shouldn’t be smeared by definition.

• But: solutions with unsmeared O-plane singularities
have appeared in the last few years 

for supersymmetric AdS

Maybe time to try again for dS?



• Review: Localized sources in AdS

• Ideas for supersymmetry breaking

• some simple de Sitter models

Plan
• some explicit solutions

• how to find them

• why one should believe them



AdS with sources

D3 dissolve; no source 
after near-horizon

N D3

AdS5 ⇥ S5

• Sometimes solutions with sources 
come from near-horizon limits 

[Youm ’99, 
Brandhuber, Oz ’99]

D4 dissolved, but 
O8 remains O8

N D4

AdS6 ⇥ (top.S4)

• Unclear if all AdS are near-horizon limits

• Better strategy: work out boundary conditions 
corresponding to various sources

• Intersecting brane solutions are rare anyway



• Sources create singularities where supergravity breaks down

ds210 = H�1/2ds2k +H1/2ds2?
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Let us also show how the metric looks like in the coordinate z we just introduced:9
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The expression for B is now valid both in the massless and massive regions. In the

latter we have that F2 � F0B is a closed form, as it should be.

2.2.4 Holographic limit

Finally we will identify the conditions under which the solutions of this section have

small curvature and string coupling. Usually one tends to take large ranks. However,

in our case it seems more appropriate to scale the number of gauge groups. Intuitively,

the idea is that our solutions came from a near-horizon limit of NS5-branes, and the

curvature is small when the number N of fivebranes is large. This is even clearer for

the massless solution (2.10), which is a reduction of N M5-branes.

Indeed one sees from (A.5) that making N very large makes the range of y become

large too. This looks promising, but one also sees from (2.19) that the �y
i

for i  L

and i � R are staying constant. This can be seen even more clearly in the z coordinate

introduced in section 2.2.3: the total range of the z coordinate is N , but (2.23) shows

that only the massless region is expanding; the massive regions stay the same size. In

terms of figure 2(c), the central region between the two Young diagrams is expanding

more and more. A more careful analysis indeed concludes that the D8’s are becoming

smaller and smaller with respect to the internal volume: the massless region is expand-

ing, pushing the D8’s closer and closer to the poles. Thus in this limit we are getting

back to the massless solution (2.10) and the details of the tail of the quiver associated

to the massive regions are washed out.

9The fact that we managed to write the metric in terms of a piecewise linear function is reminiscent

of [7]. The ultimate reason is that the combinatorial data are formally the same, but it might be

interesting to explore this relationship further.
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• Example: AdS7 in IIA. All solutions:
[Apruzzi, Fazzi, Rosa, AT ’13

Apruzzi, Fazzi, Passias, Rota, AT ‘15; 
Cremonesi, AT ’15; Bah, Passias, AT ‘17]

...
↵ = F0 ↵ piecewise cubic

interval

what happens with other boundary conditions?
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• When F0 jumps D8

• At endpoint, smoothness: S2 should shrink, ↵
↵̈ finite ↵ ! 0, ↵̈ ! 0

smooth
endpoint

D8s

z



ds210 = H�1/2ds2k +H1/2ds2?
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[Blåbäck, Danielsson, Junghans, Van Riet, Wrase, Zagermann ’11;
Apruzzi, Fazzi, Rosa, AT 13…]

ds2 ⇠ z1/2ds2AdS7 + z�1/2(dz2 + z2ds2S2)

transverse R3 D6
H

z

• ↵ ! 0

• Other interesting 
boundary conditions:

↵(z0) ↵̇(z0) ↵̈(z0)

6= 00 6= 0

06= 06= 0

06= 0

06= 0 0

0

D6

O6

regular point

O8



•Why should we believe this? Holographic checks: [Cremonesi, AT ’15]
[Apruzzi, Fazzi ‘17]

Examples

integral over 
internal dimensions
[Henningson, Skenderis ’98]

 susy, grav. & 
R-symmetry anomalies

[Ohmori, Shimizu,
 Tachikawa, Yonekura ’14;

Cordova, Dumitrescu, 
Intriligator ’15]

a = 16
7 k2(N3 � 4Nk2 + 16

5 k3)

dual quiver theory [SU gauge groups]D8sD8s

[Bah, Passias, AT ’16]
[Apruzzi, Fazzi ‘17]

D6 . . .E9�n0
(N � 1)n0 Nn02n0n0

2 4 6E7

a = 16
7

3
10N5n2

0

O8+D8



also no O-planes. Possible extension with 7-branes?

Other examples

• AdS3 in F-theory [Couzens, Lawrie, Martelli, Schäfer-Nameki ’17;
Haghighat, Murthy, Vandoren, Vafa ’15]

no O-planes so far

• AdS4 in IIA

(top. S2) ! KE4, ⌃g ⇥ ⌃g0

sources: 
D8, D6, O8, O6

O8

(top.S3) ! H3, S
3

[Rota, AT’15; Passias, Prins, AT ’18; 
Bah, Passias, Weck ’18] 



Supersymmetry breaking
•Possible way of breaking susy: consistent truncations

once rare; now common, although perhaps general theory still lacking

•For ex: every AdS7 solution has a non-susy ‘evil twin’ [Passias, Rota, AT ’15]

established via consistent truncation: some small changes
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• Most are unstable [Danielsson, Dibitetto, Vargas ’17; 
Apruzzi, De Luca, Gnecchi, Lo Monaco, AT, in progress]

part of the KK spectrum via 7d trick pert. instability for all solutions with
D8s on top of each other  

NS5 ‘bubbles’ non-pert. instability for all solutions 
with a massless region



• More general strategy?
[Legramandi, AT; in progress]

let’s start from an easy class:

�
dH(e3A���+) = 0

dH(e2A��Re��) = c e8A�2�volM4

dH(e4A��Im��) = e4A ? �(F )

eg. Mink6 ⇥M4

[Lüst, Patalong, Tsimpis ’10; 
Graña, Minasian, Petrini, AT ‘05]

dH(e3A���+) = 0

dH(e2A��Re��) = 0

dH(e4A��Im��) = e4A ? �(F )

we checked that this small modification 
works in several other classes similar in spirit to adding 

primitive part to G3 in conf. CY
[Becker, Becker ’96, Dasgupta, Rajesh, Sethi ’98, 

Graña, Polchinski ’00, Giddings, Kachru, Polchinski ‘01]

�

[Imamura ’01; Janssen, Meessen, Ortin ‘99]

[motivated by NS5-D6-D8]

�3S + 1
2@

2
zS

2 = 0 K = � 4
F0

@zS

ds2 = S�1/2ds2Mink6 +K(S�1/2dz2 + S1/2ds2R3)

keep same fluxes; 
impose Bianchi, 

but not BPS

K = � 4
F0

@zS

S = e�4A + cz

susy breaking

�3S + 1
2@

2
zS

2 + c z@2
zS = 0



dS with O8-planes
• Simplest model [Córdova, De Luca, AT ’18]

compact hyperbolic

ds2 = e2W (z)ds2dS4 + e�2W (z)(dz2 + e2�(z)ds2M5
)

Boundary condition at O8+ 

fi = {W, 1
5�,

1
2�}

inevitably, O8_ has 
strongly coupled region

Minkowski: [Bianchi, Pradisi, Sagnotti ’91,
Dabholkar, Park ’96, Witten ’97,  

Aharony, Komargodski, Patir ‘07]

see also [Silverstein, Strings 2013 talk]

Numerical evolution: 
we manage to reach

same as O8_ in flat space
[even the coefficients work]

eW

0 5 10 15
z

10

20

30

e�

e�

O8+
O8�

efi ⇠ |z � z0|�1/4

eW��f 0
i |z!0+ = 1

Z2

O8+

O8�

same effect as
O8� + 16D8

z



• Rescaling symmetry:

• Hope that this solution is sensible comes from similarity with flat-space O8_
(which we know to exist in string theory)
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it makes strong-coupling region small, but it doesn’t make it disappear.

gMN ! e2cgMN , � ! �� c

• In the O8_ region stringy corrections become dominant

supergravity action is least important term;
ideally in this region we’d switch to another duality frame.
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Full string theory should then fix c



[Córdova, De Luca, AT, to appear]

surrounds the O6

Here
∑

i τ6
iδ6
i(...) and

∑
i τ8

iδ8
i(...) are sums over the six- and eight- dimensional sources present in

the solutions. As we will see, in many cases the δi are just formal, since the submanifold where
they are supported is not part of the manifold.

Other than these equations, we also need the equations of motion for the fluxes.

Outside of any source, nor points where the two- and three- dimensional Einstein space shrink1,
the most general ansatz compatible with the symmetries of the metric is:

H = h1dz ∧ vol2+h2vol3 (3)
F2 = f2vol2 (4)
F4 = f41vol3∧ dz+ f42vol4 (5)
F0 =/ 0 (6)

where again all the functions depend only on the coordinate z.

We are now going to study the Bianchi equations,

dH = −κ2τ5δ5 (7)
dF2−H ∧F0 = −κ2τ6δ6 (8)
dF4−H ∧F2 = 0 (9)

dF0 = −κ2τ8δ8 (10)

and their Bianchi equations

d(e−2φ⋆H) = F2∧ ⋆F4−
1
2
F4∧F4−F0⋆F2 (11)

d(⋆F2) = −H ∧ ⋆F4 (12)
d(⋆F4) = −H ∧F4 (13)

locally outside of any source identifying 3 possible branches.

1.1 Studying the second branch: F0=/ 0

Summing up, in this branch we take (h1≡h) the local form of the fluxes to be

H = hdz ∧ vol2 (14)
F2 = f2vol2 (15)
F4 = f41vol3∧ dz+ f42vol4 (16)
F0 =/ 0 (17)

with

h1= f2
′/F0, f42= cost, f41=

1
F0
eQ−6W−2λ2+3λ3(F0c1− f42f2). (18)

We also have the equation

f2
′′= e2(Q−5W+φ)(F0c1f42+(e8WF0

2− f42
2 )f2)+ f2

′(Q′− 4W ′+2λ2
′ − 3λ3′ +2φ′) (19)

There are 2 independent constants: c1 and f42, and one unknown function f2, locally determined
by equation (19).

1. Otherwise the volumes are not defined.

2

ds2 = e2W ds2
dS4

+ e�2W (dz2 + e2�3ds2
M3

+ e2�2ds2
S2)

• we already know one such solution for � < 0:

from a non-susy AdS7 solution with O8+ and O6_

O8+

O6_

1�
�
ds2 = 12

�
��

�̈ds2
AdS7 +

�
� �̈

�

�
dz2 + �2

�̇2���̈ds2
S2

�

AdS4 � H3 compact hyperbolic

↵ = 3k(N2 � z2) + n0(z3 �N3)

• We also tried: O8+–O6�

dS with O8s and O6s



• we slowly modified it numerically, bringing � up

We still obtain 
the O6 boundary.

ds2 = e2W ds2
dS4

+ e�2W (dz2 + e2�3ds2
M3

+ e2�2ds2
S2)

[analytic AdS4]

e�2

10 20 30 40 z

1

2

3

[numeric dS4]

25 50 75 100 125
z

1

2

3

4

[functions rescaled for clarity]

e4W = e2�3

e�



Conclusions
•A lot of progress in AdS solutions

•Time to look for de Sitter

•often localized O-plane sources are possible

•sometimes non-supersymmetric

•holography works even in their presence

• Using numerics, we find dS solutions with O8-planes
in relatively simple setup

•Also O8-O6 solutions

• There are regions where supergravity breaks down. 

Inevitable! If you want solutions with O-planes.
We better learn how to deal with them.


